C.FRNN.FRST {RoughSets}R Documentation

The fuzzy-rough nearest neighbor algorithm

Description

It is used to predict new datasets/patterns based on the fuzzy-rough nearest neighbor algorithm (FRNN) proposed by (Jensen and Cornelis, 2011).

Usage

C.FRNN.FRST(decision.table, newdata, control = list())

Arguments

decision.table

a "DecisionTable" class representing the decision table. See SF.asDecisionTable. It should be noted that the data must be numeric values instead of string/char.

newdata

a "DecisionTable" class representing data for the test process.

See SF.asDecisionTable.

control

a list of other parameters as follows.

  • type.LU: a type of lower and upper approximations. See Section Details. The default value is type.LU = "implicator.tnorm".

  • k: the number of neighbors. It should be taken into account that this value could affect the accuracy. The default value is 5.

  • type.aggregation: the type of the aggregation operator. See BC.IND.relation.FRST. The default value is type.aggregation = c("t.tnorm", "lukasiewicz").

  • type.relation: the type of relation. See BC.LU.approximation.FRST.

    The default value is c("tolerance", "eq.1").

  • type.implicator: the type of implicator operator.

    See BC.LU.approximation.FRST. The default value is "lukasiewicz".

  • q.some: a vector of values of alpha and beta parameters of VQRS.

    See BC.LU.approximation.FRST. The default value is c(0.1, 0.6).

  • q.most: a vector of values of alpha and beta parameter of VQRS.

    See BC.LU.approximation.FRST. The default value is c(0.2, 1).

Details

This method uses the fuzzy lower and upper approximations to improve the fuzzy nearest neighbor (FNN) algorithm. This algorithm assigns a class to a target instance t as follows.

In this function, we provide two approaches based on types of fuzzy lower and upper approximations. The following is a list of the considered approximations:

Value

A matrix of predicted classes of newdata.

Author(s)

Lala Septem Riza

References

R. Jensen and C. Cornelis, "Fuzzy-rough Nearest Neighbour Classification and Prediction", Theoretical Computer Science, vol. 412, p. 5871 - 5884 (2011).

See Also

C.FRNN.O.FRST, C.POSNN.FRST

Examples

#############################################################
## In this example, we are using Iris dataset.
## It should be noted that since the values of the decision attribute are strings,
## they should be transformed into numeric values using unclass()
#############################################################
data(iris)
## shuffle the data
set.seed(2)
irisShuffled <- iris[sample(nrow(iris)),]

## transform values of the decision attribute into numerics
irisShuffled[,5] <- unclass(irisShuffled[,5])

## split the data into training and testing data
iris.training <- irisShuffled[1:105,]
iris.testing <- irisShuffled[106:nrow(irisShuffled),1:4]

colnames(iris.training) <- c("Sepal.Length", "Sepal.Width", "Petal.Length", 
                       "Petal.Width", "Species")

## convert into a standard decision table
decision.table <- SF.asDecisionTable(dataset = iris.training, decision.attr = 5, 
                                     indx.nominal = c(5))
tst.iris <- SF.asDecisionTable(dataset = iris.testing)

###### FRNN algorithm using lower/upper approximation: 
###### Implicator/tnorm based approach
control <- list(type.LU = "implicator.tnorm", k = 20, 
                type.aggregation = c("t.tnorm", "lukasiewicz"), 
                type.relation = c("tolerance", "eq.1"), t.implicator = "lukasiewicz") 									   
## Not run: res.1 <- C.FRNN.FRST(decision.table = decision.table, newdata = tst.iris,
                             control = control)
## End(Not run)

###### FRNN algorithm using VQRS
control <- list(type.LU = "vqrs", k = 20, q.some = c(0.1, 0.6), q.most = c(0.2, 1), 
                 type.relation = c("tolerance", "eq.1"), 
                 type.aggregation = c("t.tnorm","lukasiewicz"))
## Not run: res.2 <- C.FRNN.FRST(decision.table = decision.table, newdata = tst.iris,
                             control = control)
## End(Not run)


[Package RoughSets version 1.3-8 Index]