BC.discernibility.mat.FRST {RoughSets} | R Documentation |
The decision-relative discernibility matrix based on fuzzy rough set theory
Description
This is a function that is used to build the decision-relative discernibility matrix based on FRST. It is a matrix whose elements contain discernible attributes among pairs of objects. By means of this matrix, we are able to produce all decision reducts of the given decision system.
Usage
BC.discernibility.mat.FRST(
decision.table,
type.discernibility = "standard.red",
control = list()
)
Arguments
decision.table |
a |
type.discernibility |
a string representing a type of discernibility. See in Section |
control |
a list of other parameters.
|
Details
In this function, we provide several approaches in order to generate the decision-relative discernibility matrix.
Theoretically, all reducts are found by constructing
the matrix that contains elements showing discernible attributes among objects.
The discernible attributes are determined by a specific condition which depends on the selected algorithm. A particular approach can be executed by selecting
a value of the parameter type.discernibility
. The following shows the different
values of the parameter type.discernibility
corresponding approaches considered in this function.
-
"standard.red"
: It is adopted from (Tsang et al, 2008)'s approach. The concept has been explained briefly inIntroduction-FuzzyRoughSets
. In order to use this algorithm, we assign thecontrol
parameter with the following components:control = list(type.aggregation, type.relation, type.LU, t.implicator)
The detailed description of the components can be seen in
BC.IND.relation.FRST
andBC.LU.approximation.FRST
. Furthermore, in this case the authors suggest to use the "min" t-norm (i.e.,type.aggregation = c("t.tnorm", "min")
) and the implicator operator "kleene_dienes" (i.e.,t.implicator = "kleene_dienes"
). -
"alpha.red"
: It is based on (Zhao et al, 2009)'s approach where all reductions will be found by building an\alpha
-discernibility matrix. This matrix contains elements which are defined by1) if
x_i
andx_j
belong to different decision concept,c_{ij} = \{R : \mathcal{T}(R(x_i, x_j), \lambda) \le \alpha \}
,where
\lambda = (R_{\alpha} \downarrow A)(u)
which is lower approximation of FVPRS (SeeBC.LU.approximation.FRST
).2)
c_{ij}={\oslash}
, otherwise.To generate the discernibility matrix based on this approach, we use the
control
parameter with the following components:control = list(type.aggregation, type.relation, t.implicator, alpha.precision)
where the lower approximation
\lambda
is fixed totype.LU = "fvprs"
. The detailed description of the components can be seen inBC.IND.relation.FRST
andBC.LU.approximation.FRST
. Furthermore, in this case the authors suggest to use\mathcal{T}
-similarity relatione.g.,
type.relation = c("transitive.closure", "eq.3")
,the "lukasiewicz" t-norm (i.e.,
type.aggregation = c("t.tnorm", "lukasiewicz")
), andalpha.precision
from 0 to 0.5. -
"gaussian.red"
: It is based on (Chen et al, 2011)'s approach. The discernibility matrix contains elements which are defined by:1) if
x_i
andx_j
belong to different decision concept,c_{ij}= \{R : R(x_i, x_j) \le \sqrt{1 - \lambda^2(x_i)}\}
,where
\lambda = inf_{u \in U}\mathcal{I}_{cos}(R(x_i, u), A(u)) - \epsilon
. To generate fuzzy relationR
, we use the fixed parameters as follows:t.tnorm = "t.cos"
andtype.relation = c("transitive.kernel", "gaussian")
.2)
c_{ij}={\oslash}
, otherwise.In this case, we need to define
control
parameter as follows.control <- list(epsilon)
It should be noted that when having nominal values on all attributes then
epsilon
(\epsilon
) should be 0. -
"min.element"
: It is based on (Chen et al, 2012)'s approach where we only consider finding the minimal element of the discernibility matrix by introducing the binary relationDIS(R)
the relative discernibility relation of conditional attributeR
with respect to decision attributed
, which is computed asDIS(R) = \{(x_i, x_j) \in U \times U: 1 - R(x_i, x_j) > \lambda_i, x_j \notin [x_i]_d\}
,where
\lambda_i = (Sim(R) \downarrow [x_i]_d)(x_i)
withSim(R)
a fuzzy equivalence relation. In other words, this algorithm does not need to build the discernibility matrix. To generate the fuzzy relationR
and lower approximation\lambda
, we use thecontrol
parameter with the following components:control = list(type.aggregation, type.relation, type.LU, t.implicator)
.The detailed description of the components can be seen in
BC.IND.relation.FRST
and
Value
A class "DiscernibilityMatrix"
containing the following components:
-
disc.mat
: a matrix showing the decision-relative discernibility matrixM(\mathcal{A})
which containsn \times n
wheren
is the number of objects. It will be printed when choosingshow.discernibilityMatrix = TRUE
. -
disc.list
: the decision-relative discernibility represented in a list. -
discernibility.type
: a string showing the chosen type of discernibility methods. -
type.model
: in this case, it is"FRST"
.
Author(s)
Lala Septem Riza
References
D. Chen, L. Zhang, S. Zhao, Q. Hu, and P. Zhu, "A Novel Algorithm for Finding Reducts with Fuzzy Rough Sets", IEEE Trans. on Fuzzy Systems, vol. 20, no. 2, p. 385 - 389 (2012).
D. G. Chen, Q. H. Hu, and Y. P. Yang, "Parameterized Attribute Reduction with Gaussian Kernel Based Fuzzy Rough Sets", Information Sciences, vol. 181, no. 23, p. 5169 - 5179 (2011).
E. C. C. Tsang, D. G. Chen, D. S. Yeung, X. Z. Wang, and J. W. T. Lee, "Attributes Reduction Using Fuzzy Rough Sets", IEEE Trans. Fuzzy Syst., vol. 16, no. 5, p. 1130 - 1141 (2008).
S. Zhao, E. C. C. Tsang, and D. Chen, "The Model of Fuzzy Variable Precision Rough Sets", IEEE Trans. on Fuzzy Systems, vol. 17, no. 2, p. 451 - 467 (2009).
See Also
BC.discernibility.mat.RST
, BC.LU.approximation.RST
, and BC.LU.approximation.FRST
Examples
#######################################################################
## Example 1: Constructing the decision-relative discernibility matrix
## In this case, we are using The simple Pima dataset containing 7 rows.
#######################################################################
data(RoughSetData)
decision.table <- RoughSetData$pima7.dt
## using "standard.red"
control.1 <- list(type.relation = c("tolerance", "eq.1"),
type.aggregation = c("t.tnorm", "min"),
t.implicator = "kleene_dienes", type.LU = "implicator.tnorm")
res.1 <- BC.discernibility.mat.FRST(decision.table, type.discernibility = "standard.red",
control = control.1)
## using "gaussian.red"
control.2 <- list(epsilon = 0)
res.2 <- BC.discernibility.mat.FRST(decision.table, type.discernibility = "gaussian.red",
control = control.2)
## using "alpha.red"
control.3 <- list(type.relation = c("tolerance", "eq.1"),
type.aggregation = c("t.tnorm", "min"),
t.implicator = "lukasiewicz", alpha.precision = 0.05)
res.3 <- BC.discernibility.mat.FRST(decision.table, type.discernibility = "alpha.red",
control = control.3)
## using "min.element"
control.4 <- list(type.relation = c("tolerance", "eq.1"),
type.aggregation = c("t.tnorm", "lukasiewicz"),
t.implicator = "lukasiewicz", type.LU = "implicator.tnorm")
res.4 <- BC.discernibility.mat.FRST(decision.table, type.discernibility = "min.element",
control = control.4)
#######################################################################
## Example 2: Constructing the decision-relative discernibility matrix
## In this case, we are using the Hiring dataset containing nominal values
#######################################################################
## Not run: data(RoughSetData)
decision.table <- RoughSetData$hiring.dt
control.1 <- list(type.relation = c("crisp"),
type.aggregation = c("crisp"),
t.implicator = "lukasiewicz", type.LU = "implicator.tnorm")
res.1 <- BC.discernibility.mat.FRST(decision.table, type.discernibility = "standard.red",
control = control.1)
control.2 <- list(epsilon = 0)
res.2 <- BC.discernibility.mat.FRST(decision.table, type.discernibility = "gaussian.red",
control = control.2)
## End(Not run)