| rgasp-class {RobustGaSP} | R Documentation |
Robust GaSP class
Description
S4 class for Robust GaSP if the range and noise-variance ratio parameters are given and/or have been estimated.
Objects from the Class
Objects of this class are created and initialized with the function rgasp that computes the calculations needed for setting up the analysis.
Slots
p:Object of class
integer. The dimensions of the inputs.num_obs:Object of class
integer. The number of observations.input:Object of class
matrixwith dimension n x p. The design of experiments.output:Object of class
matrixwith dimension n x 1. The Observations or output vector.X:Object of class
matrixof with dimension n x q. The mean basis function, i.e. the trend function.zero_mean:A
characterto specify whether the mean is zero or not. "Yes" means it has zero mean and "No"" means the mean is not zero.q:Object of class
integer. The number of mean basis.LB:Object of class
vectorwith dimension p x 1. The lower bound for inverse range parameters beta.beta_initial:Object of class
vectorwith the initial values of inverse range parameters p x 1.beta_hat:Object of class
vectorwith dimension p x 1. The inverse-range parameters.log_post:Object of class
numericwith the logarithm of marginal posterior.R0:Object of class
listof matrices where the j-th matrix is an absolute difference matrix of the j-th input vector.theta_hat:Object of class
vectorwith dimension q x 1. The the mean (trend) parameter.L:Object of class
matrixwith dimension n x n. The Cholesky decomposition of the correlation matrixR, i.e.L\%*\%t(L)=Rsigma2_hat:Object of the class
numeric. The estimated variance parameter.LX:Object of the class
matrixwith dimension q x q. The Cholesky decomposition of the correlation matrixt(X)\%*\%R^{-1}\%*\%XCL:Object of the class
vectorused for the lower bound and the prior.nugget:A
numericobject used for the noise-variance ratio parameter.nugget.est:A
logicalobject of whether the nugget is estimated (T) or fixed (F).kernel_type:A
vectorofcharacterto specify the type of kernel to use.alpha:Object of class
vectorwith dimension p x 1 for the roughness parameters in the kernel.method:Object of class
characterto specify the method of parameter estimation. There are three values:post_mode,mleandmmle.isotropic:Object of class
logicalto specify whether the kernel is isotropic.call:The
calltorgaspfunction to create the object.
Methods
- show
Prints the main slots of the object.
- predict
See
predict.
Note
The response output must have one dimension.
The number of observations in input must be equal to the number of experiments output.
Author(s)
Mengyang Gu [aut, cre], Jesus Palomo [aut], James Berger [aut]
Maintainer: Mengyang Gu <mengyang@pstat.ucsb.edu>
See Also
RobustGaSP for more details about how to create a RobustGaSP object.