| RobustGaSP-package {RobustGaSP} | R Documentation |
Robust Gaussian Stochastic Process Emulation
Description
Robust parameter estimation and prediction of Gaussian stochastic process emulators. It allows for robust parameter estimation and prediction using Gaussian stochastic process emulator. It also implements the parallel partial Gaussian stochastic process emulator for computer model with massive outputs See the reference: Mengyang Gu and Jim Berger, 2016, Annals of Applied Statistics; Mengyang Gu, Xiaojing Wang and Jim Berger, 2018, Annals of Statistics.
Details
The DESCRIPTION file:
| Package: | RobustGaSP |
| Type: | Package |
| Title: | Robust Gaussian Stochastic Process Emulation |
| Version: | 0.6.6 |
| Date/Publication: | 2024-01-14 08:10:03 UTC |
| Authors@R: | c(person(given="Mengyang",family="Gu",role=c("aut","cre"), email="mengyang@pstat.ucsb.edu"), person(given="Jesus",family="Palomo", role=c("aut"), email="jesus.palomo@urjc.es"), person(given="James",family="Berger", role="aut")) |
| Maintainer: | Mengyang Gu <mengyang@pstat.ucsb.edu> |
| Author: | Mengyang Gu [aut, cre], Jesus Palomo [aut], James Berger [aut] |
| Description: | Robust parameter estimation and prediction of Gaussian stochastic process emulators. It allows for robust parameter estimation and prediction using Gaussian stochastic process emulator. It also implements the parallel partial Gaussian stochastic process emulator for computer model with massive outputs See the reference: Mengyang Gu and Jim Berger, 2016, Annals of Applied Statistics; Mengyang Gu, Xiaojing Wang and Jim Berger, 2018, Annals of Statistics. |
| License: | GPL-2 | GPL-3 |
| LazyData: | true |
| Depends: | R (>= 3.5.0), methods |
| Imports: | Rcpp (>= 0.12.3), nloptr (>= 1.0.4) |
| LinkingTo: | Rcpp, RcppEigen |
| NeedsCompilation: | yes |
| Repository: | CRAN |
| Packaged: | 2019-06-05 02:09:17 UTC; gumengyang |
| RoxygenNote: | 5.0.1 |
Index of help topics:
RobustGaSP-package Robust Gaussian Stochastic Process Emulation
findInertInputs find inert inputs with the posterior mode
humanity.X data from the humanity model
leave_one_out_rgasp leave-one-out fitted values and standard
deviation for robust GaSP model
plot Plot for Robust GaSP model
ppgasp Setting up the parallel partial GaSP model
ppgasp-class PP GaSP class
predict.ppgasp Prediction for PP GaSP model
predict.rgasp Prediction for Robust GaSP model
predppgasp-class Predicted PP GaSP class
predrgasp-class Predictive robust GaSP class
rgasp Setting up the robust GaSP model
rgasp-class Robust GaSP class
show Show Robust GaSP object
show.ppgasp Show parllel partial Gaussian stochastic
process (PP GaSP) object
simulate Sample for Robust GaSP model
Author(s)
Mengyang Gu [aut, cre], Jesus Palomo [aut], James Berger [aut]
Maintainer: Mengyang Gu <mengyang@pstat.ucsb.edu>
References
J.O. Berger, V. De Oliveira and B. Sanso (2001), Objective Bayesian analysis of spatially correlated data, Journal of the American Statistical Association, 96, 1361-1374.
M. Gu. and J.O. Berger (2016). Parallel partial Gaussian process emulation for computer models with massive output. Annals of Applied Statistics, 10(3), 1317-1347.
M. Gu. (2016). Robust uncertainty quantification and scalable computation for computer models with massive output. Ph.D. thesis. Duke University.
M. Gu, X. Wang and J.O. Berger (2018), Robust Gaussian stochastic process emulation, Annals of Statistics, 46(6A), 3038-3066.
M. Gu (2018), Jointly robust prior for Gaussian stochastic process in emulation, calibration and variable selection, arXiv:1804.09329.
R. Paulo (2005), Default priors for Gaussian processes, Annals of statistics, 33(2), 556-582.
J. Sacks, W.J. Welch, T.J. Mitchell, and H.P. Wynn (1989), Design and analysis of computer experiments, Statistical Science, 4, 409-435.
Examples
#------------------------
# a 3 dimensional example
#------------------------
# dimensional of the inputs
dim_inputs <- 3
# number of the inputs
num_obs <- 30
# uniform samples of design
input <- matrix(runif(num_obs*dim_inputs), num_obs,dim_inputs)
# Following codes use maximin Latin Hypercube Design, which is typically better than uniform
# library(lhs)
# input <- maximinLHS(n=num_obs, k=dim_inputs) ##maximin lhd sample
####
# outputs from the 3 dim dettepepel.3.data function
output = matrix(0,num_obs,1)
for(i in 1:num_obs){
output[i]<-dettepepel.3.data(input[i,])
}
# use constant mean basis, with no constraint on optimization
m1<- rgasp(design = input, response = output, lower_bound=FALSE)
# the following use constraints on optimization
# m1<- rgasp(design = input, response = output, lower_bound=TRUE)
# the following use a single start on optimization
# m1<- rgasp(design = input, response = output, lower_bound=FALSE)
# number of points to be predicted
num_testing_input <- 5000
# generate points to be predicted
testing_input <- matrix(runif(num_testing_input*dim_inputs),num_testing_input,dim_inputs)
# Perform prediction
m1.predict<-predict(m1, testing_input, outasS3 = FALSE)
# Predictive mean
#m1.predict@mean
# The following tests how good the prediction is
testing_output <- matrix(0,num_testing_input,1)
for(i in 1:num_testing_input){
testing_output[i]<-dettepepel.3.data(testing_input[i,])
}
# compute the MSE, average coverage and average length
# out of sample MSE
MSE_emulator <- sum((m1.predict@mean-testing_output)^2)/(num_testing_input)
# proportion covered by 95% posterior predictive credible interval
prop_emulator <- length(which((m1.predict@lower95<=testing_output)
&(m1.predict@upper95>=testing_output)))/num_testing_input
# average length of posterior predictive credible interval
length_emulator <- sum(m1.predict@upper95-m1.predict@lower95)/num_testing_input
# output of prediction
MSE_emulator
prop_emulator
length_emulator
# normalized RMSE
sqrt(MSE_emulator/mean((testing_output-mean(output))^2 ))