summary.TML {RobustAFT} | R Documentation |
Summarizing Truncated Maximum Likelihood regression
Description
Summary and print methods
for R
object of class "TML" and print
method for the summary object.
Further, methods fitted
(), residuals
(), weights
()
or update
() work (via the default methods), and coef
(), vcov
()
have explicitly defined TML methods.
Usage
## S3 method for class 'TML'
summary(object, ...)
## S3 method for class 'TML'
print(x, digits = max(3, getOption("digits") - 3), ...)
## S3 method for class 'TML'
coef(object, ...)
## S3 method for class 'TML'
vcov(object, ...)
## S3 method for class 'summary.TML'
print(x, digits = max(3, getOption("digits") - 3),
signif.stars = getOption("show.signif.stars"), ...)
Arguments
object |
An object of class "TML", usually, a result of a call to |
... |
Potentially more arguments passed to methods. |
digits |
Number of digits for printing, see |
x |
An object of class "TML" or "summary.TML". |
signif.stars |
Logical indicating if the P-values should be visualized by so called "significance stars". |
Details
summary.TML
returns an object of class
"summary.TML".
print.TML
returns a printed summary of object of class "TML".
print.summary.TML
tries to be smart about formatting the coefficients, standard errors, etc, and gives "significance stars" if signif.stars is TRUE (as per default when options
where not changed).
coef.TML
returns the final coefficient estimates (value th1
of a "TML" object), and vcov.TML
returns the covariance matrix of the final estimates (value CV1
of a "TML" object).
Value
An object of class "summary.TML" is a list with the following components:
call |
The component from |
terms |
The component from |
residuals |
The component from |
fitted.values |
The component from |
tn |
The component from |
coefficients |
The matrix of coefficients, standard errors, t-values and p-values. Aliased coefficients are omitted. |
aliased |
Named logical vector showing if the original coefficients are aliased. |
df |
Degrees of freedom, a 3-vector (p, n-p, p*), the last being the number of non-aliased coefficients. |
sigma |
The final scale estimate from |
cutoff.values |
A vector of the final lower and upper cut-off values from |
See Also
TML.noncensored
, TML.censored
, summary
, print
Examples
## Not run:
data(D243)
Cost <- D243$Cost # Cost (Swiss francs)
LOS <- D243$LOS # Length of stay (days)
Adm <- D243$Typadm; Adm <- (Adm==" Urg")*1 # Type of admission
# (0=on notification, 1=Emergency)
Ass <- D243$Typass; Ass <- (Ass=="P" )*1 # Type of insurance
# (0=usual, 1=private)
Age <- D243$age # Age (years)
Dst <- D243$dest; Dst <- (Dst=="DOMI")*1 # Destination
# (1=Home, 0=another hospital)
Sex <- D243$Sexe; Sex <- (Sex=="M" )*1 # Sex (1=Male, 0=Female)
# Truncated maximum likelihood regression with Gaussian errors
z <- TML.noncensored(log(Cost)~log(LOS)+Adm+Ass+Age+Dst+Sex, otp="adaptive",
cov="nonparametric", control=list(fastS=TRUE))
z # -> print.TML(....)
sumz <- summary(z) # -> summary.TML(....)
sumz # -> print.summary.TML(....)
coef(z) # -> coef.TML(....)
vcov(z) # -> vcov.TML(....)
## End(Not run)