TML1.noncensored {RobustAFT} | R Documentation |
Truncated Maximum Likelihood Estimates of Location and Scale
Description
This functions computes the truncated maximum likelihood estimates of location and scale
described in Marazzi and Yohai (2004).
It assumes that the error distribution is approximately Gaussian or log-Weibull.
The cut-off values for outlier rejection are fixed or adaptive.
This function is a simplified version of TML.noncensored
for the case without covariates.
Usage
TML1.noncensored(y, errors= c("Gaussian", "logWeibull"), cu = NULL,
initial = c("S", "input"), otp = c("adaptive", "fixed"),
cov = c("no", "parametric", "nonparametric"), input = NULL,
control = list(), ...)
Arguments
y |
Observation vector |
errors |
|
cu |
Preliminary minimal upper cut-off. The default is 2.5 in the Gaussian case and 1.855356 in the log-Weibull case. |
initial |
|
otp |
|
cov |
|
input |
Initial input estimates of location and scale.
|
control |
Control parameters. For the default values, see the function |
... |
If initial="S", parameters for the computation of the initial S estimates. See the function |
Value
A list with the following components:
th0 |
Initial location estimate (S or input). |
v0 |
Initial scale estimate (S or input). |
nit0 |
Reached number of iteration if initial="S" |
th1 |
Final location estimate. |
v1 |
Final scale estimate. |
nit1 |
Reached iteration number in IRLS algorithm for final estimate (only for the log_Weibull case). |
tu , tl |
Final cut-off values. |
alpha |
Estimated proportion of retained observations. |
tn |
Number of retained observations. |
beta |
Consistency constant for scale. |
wi |
Vector of weights (0 for rejected observations, 1 for retained observations). |
CV0 |
Covariance matrix of the initial estimates (th0,v0). |
CV1 |
Covariance matrix of the final estimates (th1,v1). |
References
Marazzi A., Yohai V. (2004). Adaptively truncated maximum likelihood regression with asymmetric errors. Journal of Statistical Planning and Inference, 122, 271-291.
See Also
TML.noncensored
, TML1.noncensored.control
, TML1.noncensored.control.S
Examples
## Not run:
data(Z243)
Cost <- Z243$CouTot
y <- log(Cost)
ctrl <- TML1.noncensored.control(iv=1,tol=1e-3)
z <- TML1.noncensored(y,errors="logWeibull", initial="S",otp="adaptive",
cov="no",control=ctrl)
## End(Not run)