TML.censored {RobustAFT} | R Documentation |
Truncated Maximum Likelihood Regression With Censored Observations
Description
This function computes the truncated maximum likelihood estimates of accelerated failure time regression described in Locatelli et al. (2010). The error distribution is assumed to follow approximately a Gaussian or a log-Weibull distribution. The cut-off values for outlier rejection are fixed or adaptive.
Usage
TML.censored(formula, delta, data, errors = "Gaussian", initial = "S",
input = NULL, otp = "fixed", cov=TRUE, cu = NULL, control.S=list(),
control.ref=list(), control.tml=list())
Arguments
formula |
A |
data |
An optional data frame containing the variables in the model. If not
found in |
delta |
Vector of 0 and 1.
|
errors |
|
initial |
|
input |
A list(theta=c(...),sigma=...): initial input estimates where
theta is a vector of p coefficients and sigma a scalar scale. |
otp |
|
cov |
If TRUE the covariance matrix is computed. |
cu |
Preliminary minimal upper cut-off. The default is 2.5 in the Gaussian case and 1.855356 in the log-Weibull case. |
control.S |
A list of control parameters for the computation of the initial S estimates.
See the function |
control.ref |
A list of control parameters for the refinement algorithm of the initial S estimates.
See the function |
control.tml |
AA list of control parameters for the computation of the final estimates.
See the function |
Value
TML.censored
returns an object of class "TML".
The function summary
can be used to obtain or print a summary of the results.
The generic extractor functions fitted
, residuals
and
weights
can be used to extract various elements of the object returned
by TML.censored
. The function update
can be used to update the model.
An object of class "TML" is a list with at least the following components:
th0 |
Initial coefficient estimates. |
v0 |
Initial scale estimate. |
nit.ref |
Reached number of iteration in the refinement step for the initial estimates. |
th1 |
Final coefficient estimates. |
v1 |
Final scale estimate. |
nit.tml |
Number of iterations reached in IRLS algorithm for the final estimates. |
tu , tl |
Final cut-off values. |
alpha |
Estimated proportion of retained observations. |
tn |
Number of retained observations. |
weights |
Vector of weights (0 for rejected observations, 1 for retained observations). |
COV |
Covariance matrix of the final estimates (th1[1],...,th1[p],v1) (where p=ncol(X)). |
residuals |
Residuals of noncensored observations are calculated as response minus fitted values. For censored observations, the the expected residuals given that the response is larger than the recorded censored value are provided. |
fitted.values |
The fitted mean values. |
call |
The matched call. |
formula |
The formula supplied. |
terms |
The |
data |
The |
References
Locatelli I., Marazzi A., Yohai V. (2010). Robust accelerated failure time regression. Computational Statistics and Data Analysis, 55, 874-887.
See Also
TML.censored.control.ref
,
TML.censored.control.tml
,
TML.censored.control.S
,
TML.noncensored
Examples
# This is the example described in Locatelli et al. (2010).
# The estimates are slighty different than those of the paper due to changes
# in the algorithm for the final estimate.
#
## Not run:
data(MCI)
attach(MCI)
# Exploratory Analysis
plot(Age,log(LOS),type= "n",cex=0.7)
# (1) filled square : regular, complete
# (2) empty square : regular, censored
# (3) filled triangle : emergency, complete
# (4) empty triangle : emergency, censored
points(Age[Dest==1 & TypAdm==0], log(LOS)[Dest==1 & TypAdm==0], pch=15,cex=0.7) # (1)
points(Age[Dest==0 & TypAdm==0], log(LOS)[Dest==0 & TypAdm==0], pch=0, cex=0.7) # (2)
points(Age[Dest==1 & TypAdm==1], log(LOS)[Dest==1 & TypAdm==1], pch=17,cex=0.7) # (3)
points(Age[Dest==0 & TypAdm==1], log(LOS)[Dest==0 & TypAdm==1], pch=2, cex=0.7) # (4)
# Maximum Likelihood
ML <- survreg(Surv(log(LOS), Dest) ~ TypAdm*Age, dist="gaussian")
summary(ML)
B.ML <- ML$coef
S.ML <- ML$scale
abline(c(B.ML[1] ,B.ML[3] ),lwd=1,col="grey",lty=1)
abline(c(B.ML[1]+B.ML[2],B.ML[3]+B.ML[4]),lwd=1,col="grey",lty=1)
# Robust Accelerated Failure Time Regression with Gaussian errors
ctrol.S <- list(N=150, q=5, sigma0=1, MAXIT=100, TOL=0.001,seed=123)
ctrol.ref <- list(maxit.sigma=2,tol.sigma=0.0001,maxit.Beta=2,tol.Beta=0.0001,
Maxit.S=50, tol.S.sigma=0.001, tol.S.Beta=0.001,alg.sigma=1,nitmon=FALSE)
ctrol.tml <- list(maxit.sigma=50,tol.sigma=0.0001,maxit.Beta=50,tol.Beta=0.0001,
Maxit.TML=50, tol.TML.sigma=0.001, tol.TML.Beta=0.001, alg.sigma=1,nitmon=FALSE)
WML<-TML.censored(log(LOS)~TypAdm*Age,data=MCI,delta=Dest,otp="adaptive",
control.S=ctrol.S,control.ref=ctrol.ref,control.tml=ctrol.tml)
summary(WML)
B.WML<-coef(WML)
abline(c(B.WML[1] ,B.WML[3] ),lty=1, col="red")
abline(c(B.WML[1]+B.WML[2],B.WML[3]+B.WML[4]),lty=1, col="red")
## End(Not run)