logregWML {RobStatTM} | R Documentation |
Weighted likelihood estimator for the logistic model
Description
This function computes a weighted likelihood estimator for the logistic model, where the weights penalize high leverage observations. In this version the weights are zero or one.
Usage
logregWML(x0, y, intercept = 1)
Arguments
x0 |
p x n matrix of explanatory variables, p is the number of explanatory variables, n is the number of observations |
y |
response vector |
intercept |
1 or 0 indicating if an intercept is included or or not |
Value
A list with the following components:
coefficients |
vector of regression coefficients |
standard.deviation |
standard deviations of the regression coefficient estimators |
fitted.values |
vector with the probabilities of success |
residual.deviances |
residual deviances |
cov |
covariance matrix of the regression estimates |
objective |
value of the objective function at the minimum |
xweights |
vector of zeros and ones used to compute the weighted maimum likelihood estimator |
Author(s)
Victor Yohai
References
http://www.wiley.com/go/maronna/robust
Examples
data(skin)
Xskin <- as.matrix( skin[, 1:2] )
yskin <- skin$vasoconst
skinWML <- logregWML(Xskin, yskin, intercept=1)
skinWML$coeff
skinWML$standard.deviation