pcaRobS {RobStatTM} | R Documentation |
Robust principal components
Description
This function computes robust principal components based on the minimization of the "residual" M-scale.
Usage
pcaRobS(X, ncomp, desprop = 0.9, deltasca = 0.5, maxit = 100)
Arguments
X |
a data matrix with observations in rows. |
ncomp |
desired (maximum) number of components |
desprop |
desired (minimum) proportion of explained variability (default = 0.9) |
deltasca |
"delta" parameter of the scale M-estimator (default=0.5) |
maxit |
maximum number of iterations (default= 100) |
Value
A list with the following components:
q |
The actual number of principal components |
propex |
The actual proportion of unexplained variability |
eigvec |
Eigenvectors, in a |
fit |
an |
repre |
An |
propSPC |
A vector of length |
Author(s)
Ricardo Maronna, rmaronna@retina.ar, based on original code by D. Pen~a and J. Prieto
References
http://www.wiley.com/go/maronna/robust
Examples
data(bus)
X0 <- as.matrix(bus)
X1 <- X0[,-9]
ss <- apply(X1, 2, mad)
mu <- apply(X1, 2, median)
X <- scale(X1, center=mu, scale=ss)
q <- 3 #compute three components
rr <- pcaRobS(X, q, 0.99)
round(rr$eigvec, 3)