KolmogorovMinDist {RobLoxBioC} | R Documentation |
Generic Function for Computing Minimum Kolmogorov Distance for Biological Data
Description
Generic function for computing minimum Kolmogorov distance for biological data.
Usage
KolmogorovMinDist(x, D, ...)
## S4 method for signature 'matrix,Norm'
KolmogorovMinDist(x, D, mad0 = 1e-4)
## S4 method for signature 'AffyBatch,AbscontDistribution'
KolmogorovMinDist(x, D, bg.correct = TRUE, pmcorrect = TRUE,
verbose = TRUE)
## S4 method for signature 'beadLevelData,AbscontDistribution'
KolmogorovMinDist(x, D, log = FALSE, what = "Grn",
probes = NULL, arrays = NULL)
Arguments
x |
biological data. |
D |
object of class |
... |
additional parameters. |
mad0 |
scale estimate used if computed MAD is equal to zero. Median and MAD are used as start parameter for optimization. |
bg.correct |
if |
pmcorrect |
if |
verbose |
logical: if |
log |
if |
what |
character string specifying which intensities/values to summarize;
see |
probes |
Specify particular probes to summarize. If left |
arrays |
integer (scalar or vector) specifying the strips/arrays to summarize.
If |
Details
The minimum Kolmogorov distance is computed for each row of a matrix, each Affymetrix probe, or each Illumina bead, respectively.
So far, only the minimum distance to the set of normal distributions can be computed.
Value
List with components dist
containing a numeric vector
or matrix with minimum Kolmogorov distances and n
a numeric vector
or matrix with the corresponding sample sizes.
Author(s)
Matthias Kohl Matthias.Kohl@stamats.de
References
Huber, P.J. (1981) Robust Statistics. New York: Wiley.
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.
See Also
Examples
set.seed(123) # to have reproducible results for package checking
## matrix method for KolmogorovMinDist
ind <- rbinom(200, size=1, prob=0.05)
X <- matrix(rnorm(200, mean=ind*3, sd=(1-ind) + ind*9), nrow = 2)
KolmogorovMinDist(X, D = Norm())
## using Affymetrix data
data(SpikeIn)
probes <- log2(pm(SpikeIn))
(res <- KolmogorovMinDist(probes, Norm()))
boxplot(res$dist)
## \donttest because of check time
## using Affymetrix data
library(affydata)
data(Dilution)
res <- KolmogorovMinDist(Dilution[,1], Norm())
summary(res$dist)
boxplot(res$dist)
plot(res$n, res$dist, pch = 20, main = "Kolmogorov distance vs. sample size",
xlab = "sample size", ylab = "Kolmogorov distance",
ylim = c(0, max(res$dist)))
uni.n <- min(res$n):max(res$n)
lines(uni.n, 1/(2*uni.n), col = "orange", lwd = 2)
legend("topright", legend = "minimal possible distance", fill = "orange")
## Illumina bead level data
library(beadarrayExampleData)
data(exampleBLData)
res <- KolmogorovMinDist(exampleBLData, Norm(), arrays = 1)
res1 <- KolmogorovMinDist(exampleBLData, Norm(), log = TRUE, arrays = 1)
summary(cbind(res$dist, res1$dist))
boxplot(list(res$dist, res1$dist), names = c("raw", "log-raw"))
sort(unique(res1$n))
plot(res1$n, res1$dist, pch = 20, main = "Kolmogorov distance vs. sample size",
xlab = "sample size", ylab = "Kolmogorov distance",
ylim = c(0, max(res1$dist)), xlim = c(min(res1$n), 56))
uni.n <- min(res1$n):56
lines(uni.n, 1/(2*uni.n), col = "orange", lwd = 2)
legend("topright", legend = "minimal possible distance", fill = "orange")