rlsOptIC.M {RobLox} | R Documentation |
Computation of the optimally robust IC for M estimators
Description
The function rlsOptIC.M
computes the optimally robust IC for
M estimators in case of normal location with unknown scale and
(convex) contamination neighborhoods. The definition of
these estimators can be found in Section 8.3 of Kohl (2005).
Usage
rlsOptIC.M(r, ggLo = 0.5, ggUp = 1.5, a1.start = 0.75, a3.start = 0.25,
bUp = 1000, delta = 1e-05, itmax = 100, check = FALSE)
Arguments
r |
non-negative real: neighborhood radius. |
ggLo |
non-negative real: the lower end point of the interval to be searched
for |
ggUp |
positive real: the upper end point of the interval to be searched
for |
a1.start |
real: starting value for |
a3.start |
real: starting value for |
bUp |
positive real: upper bound used in the computation of the optimal clipping bound b. |
delta |
the desired accuracy (convergence tolerance). |
itmax |
the maximum number of iterations. |
check |
logical. Should constraints be checked. |
Details
The optimal values of the tuning constants \alpha_1
,
\alpha_3
, b and \gamma
can be read off
from the slot Infos
of the resulting IC.
Value
Object of class "IC"
Author(s)
Matthias Kohl Matthias.Kohl@stamats.de
References
Huber, P.J. (1981) Robust Statistics. New York: Wiley.
M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Dissertation. University of Bayreuth. https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf.
See Also
Examples
IC1 <- rlsOptIC.M(r = 0.1, check = TRUE)
distrExOptions("ErelativeTolerance" = 1e-12)
checkIC(IC1, NormLocationScaleFamily())
distrExOptions("ErelativeTolerance" = .Machine$double.eps^0.25)
Risks(IC1)
Infos(IC1)
plot(IC1)
infoPlot(IC1)