rlsOptIC.An2 {RobLox}R Documentation

Computation of the optimally robust IC for An2 estimators

Description

The function rlsOptIC.An2 computes the optimally robust IC for An2 estimators in case of normal location with unknown scale and (convex) contamination neighborhoods. The definition of these estimators can be found in Subsection 8.5.3 of Kohl (2005).

Usage

rlsOptIC.An2(r, a.start = 1.5, k.start = 1.5, delta = 1e-06, MAX = 100)

Arguments

r

non-negative real: neighborhood radius.

a.start

positive real: starting value for a.

k.start

positive real: starting value for k.

delta

the desired accuracy (convergence tolerance).

MAX

if a or k are beyond the admitted values, MAX is returned.

Details

The computation of the optimally robust IC for An2 estimators is based on optim where MAX is used to control the constraints on a and k. The optimal values of the tuning constants a and k can be read off from the slot Infos of the resulting IC.

Value

Object of class "IC"

Author(s)

Matthias Kohl Matthias.Kohl@stamats.de

References

Andrews, D.F., Bickel, P.J., Hampel, F.R., Huber, P.J., Rogers, W.H. and Tukey, J.W. (1972) Robust estimates of location. Princeton University Press.

M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Dissertation. University of Bayreuth. https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf.

See Also

IC-class

Examples

IC1 <- rlsOptIC.An2(r = 0.1)
checkIC(IC1)
Risks(IC1)
Infos(IC1)
plot(IC1)
infoPlot(IC1)

[Package RobLox version 1.2.1 Index]