rlOptIC {RobLox} | R Documentation |
Computation of the optimally robust IC for AL estimators
Description
The function rlOptIC
computes the optimally robust IC for
AL estimators in case of normal location and (convex) contamination
neighborhoods. The definition of these estimators can be found
in Rieder (1994) or Kohl (2005), respectively.
Usage
rlOptIC(r, mean = 0, sd = 1, bUp = 1000, computeIC = TRUE)
Arguments
r |
non-negative real: neighborhood radius. |
mean |
specified mean. |
sd |
specified standard deviation. |
bUp |
positive real: the upper end point of the interval to be searched for the clipping bound b. |
computeIC |
logical: should IC be computed. See details below. |
Details
If 'computeIC' is 'FALSE' only the Lagrange multipliers 'A', 'a', and 'b' contained in the optimally robust IC are computed.
Value
If 'computeIC' is 'TRUE' an object of class "ContIC"
is returned,
otherwise a list of Lagrange multipliers
A |
standardizing constant |
a |
centering constant; always '= 0' is this symmetric setup |
b |
optimal clipping bound |
Author(s)
Matthias Kohl Matthias.Kohl@stamats.de
References
M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Dissertation. University of Bayreuth. https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf.
H. Rieder (1994): Robust Asymptotic Statistics. Springer. doi:10.1007/978-1-4684-0624-5
M. Kohl, P. Ruckdeschel, and H. Rieder (2010). Infinitesimally Robust Estimation in General Smoothly Parametrized Models. Statistical Methods and Applications 19(3): 333-354. doi:10.1007/s10260-010-0133-0.
See Also
Examples
IC1 <- rlOptIC(r = 0.1)
distrExOptions("ErelativeTolerance" = 1e-12)
checkIC(IC1)
distrExOptions("ErelativeTolerance" = .Machine$double.eps^0.25) # default
Risks(IC1)
cent(IC1)
clip(IC1)
stand(IC1)
plot(IC1)