ismevgpdgevdiag-methods {RobExtremes} | R Documentation |
Methods for Diagnostic Functions in Package ‘RobExtremes’
Description
We provide wrapper to the diagnostic plots
gpd.diag
and gev.diag
of package ismev,
as well as to profilers gpd.prof
, gpd.profxi
and gev.prof
,
gev.profxi
.
Usage
gpd.diag(z,...)
## S4 method for signature 'gpd.fit'
gpd.diag(z)
## S4 method for signature 'GPDEstimate'
gpd.diag(z, npy = 365)
gev.diag(z)
## S4 method for signature 'gev.fit'
gev.diag(z)
## S4 method for signature 'GEVEstimate'
gev.diag(z)
gpd.prof(z,...)
## S4 method for signature 'gpd.fit'
gpd.prof(z, m, xlow, xup, npy = 365, conf = 0.95, nint = 100)
## S4 method for signature 'GPDEstimate'
gpd.prof(z, m, xlow, xup, npy = 365, conf = 0.95, nint = 100)
gev.prof(z,...)
## S4 method for signature 'gev.fit'
gev.prof(z, m, xlow, xup, conf = 0.95, nint = 100)
## S4 method for signature 'GEVEstimate'
gev.prof(z, m, xlow, xup, conf = 0.95, nint = 100)
gpd.profxi(z,...)
## S4 method for signature 'gpd.fit'
gpd.profxi(z, xlow, xup, conf = 0.95, nint = 100)
## S4 method for signature 'GPDEstimate'
gpd.profxi(z, xlow, xup, npy = 365, conf = 0.95, nint = 100)
gev.profxi(z,...)
## S4 method for signature 'gev.fit'
gev.profxi(z, xlow, xup, conf = 0.95, nint = 100)
## S4 method for signature 'GEVEstimate'
gev.profxi(z, xlow, xup, conf = 0.95, nint = 100)
Arguments
z |
an argument of class |
m |
The return level (i.e.\ the profile likelihood is for the
value that is exceeded with probability |
... |
further parameters to be passed on the specific methods. |
xlow , xup |
The least and greatest value at which to evaluate the profile likelihood. |
npy |
The number of observations per year. |
conf |
The confidence coefficient of the plotted profile confidence interval. |
nint |
The number of points at which the profile likelihood is evaluated. |
Details
We provide a coercing of our fits of S4-classes "GPDEstimate"
and "GEVEstimate"
to the (S3-)classes gpd.fit
and gev.fit
of package ismev (the latter being cast to an S4 class, internally, in
our package.
Value
For gpd.fit
, gev.fit
(quoted from package ismev:
For stationary models four plots are produced; a probability plot,
a quantile plot, a return level plot and a histogram of data with
fitted density.
For non-stationary models two plots are produced; a residual probability plot and a residual quantile plot.
For gpd.prof
, gev.prof
(quoted from package ismev:
A plot of the profile likelihood is produced, with a horizontal
line representing a profile confidence interval with confidence
coefficient conf
.
Author(s)
Peter Ruckdeschel peter.ruckdeschel@uni-oldenburg.de
References
ismev: An Introduction to Statistical Modeling of Extreme Values. R package version 1.39. https://CRAN.R-project.org/package=ismev; original S functions written by Janet E. Heffernan with R port and R documentation provided by Alec G. Stephenson. (2012).
Coles, S. (2001). An introduction to statistical modeling of extreme values. London: Springer.
Examples
if(require(ismev)){
## from ismev
data(portpirie)
data(rain)
detach(package:ismev)
ppfit <- ismev::gev.fit(portpirie[,2])
gev.diag(ppfit)
##
(mlE <- MLEstimator(portpirie[,2], GEVFamilyMuUnknown(withPos=FALSE)))
gev.diag(mlE)
## not tested on CRAN because it takes some time...
gev.prof(mlE, m = 10, 4.1, 5)
gev.profxi(mlE, -0.3, 0.3)
rnfit <- ismev::gpd.fit(rain,10)
gpd.diag(rnfit)
##
mlE2 <- MLEstimator(rain[rain>10], GParetoFamily(loc=10))
gpd.diag(mlE2)
gpd.prof(mlE2, m = 10, 55, 77)
gpd.profxi(mlE2, -0.02, 0.02)
}