| ismevgpdgevdiag-methods {RobExtremes} | R Documentation |
Methods for Diagnostic Functions in Package ‘RobExtremes’
Description
We provide wrapper to the diagnostic plots
gpd.diag and gev.diag of package ismev,
as well as to profilers gpd.prof, gpd.profxi and gev.prof,
gev.profxi.
Usage
gpd.diag(z,...)
## S4 method for signature 'gpd.fit'
gpd.diag(z)
## S4 method for signature 'GPDEstimate'
gpd.diag(z, npy = 365)
gev.diag(z)
## S4 method for signature 'gev.fit'
gev.diag(z)
## S4 method for signature 'GEVEstimate'
gev.diag(z)
gpd.prof(z,...)
## S4 method for signature 'gpd.fit'
gpd.prof(z, m, xlow, xup, npy = 365, conf = 0.95, nint = 100)
## S4 method for signature 'GPDEstimate'
gpd.prof(z, m, xlow, xup, npy = 365, conf = 0.95, nint = 100)
gev.prof(z,...)
## S4 method for signature 'gev.fit'
gev.prof(z, m, xlow, xup, conf = 0.95, nint = 100)
## S4 method for signature 'GEVEstimate'
gev.prof(z, m, xlow, xup, conf = 0.95, nint = 100)
gpd.profxi(z,...)
## S4 method for signature 'gpd.fit'
gpd.profxi(z, xlow, xup, conf = 0.95, nint = 100)
## S4 method for signature 'GPDEstimate'
gpd.profxi(z, xlow, xup, npy = 365, conf = 0.95, nint = 100)
gev.profxi(z,...)
## S4 method for signature 'gev.fit'
gev.profxi(z, xlow, xup, conf = 0.95, nint = 100)
## S4 method for signature 'GEVEstimate'
gev.profxi(z, xlow, xup, conf = 0.95, nint = 100)
Arguments
z |
an argument of class |
m |
The return level (i.e.\ the profile likelihood is for the
value that is exceeded with probability |
... |
further parameters to be passed on the specific methods. |
xlow, xup |
The least and greatest value at which to evaluate the profile likelihood. |
npy |
The number of observations per year. |
conf |
The confidence coefficient of the plotted profile confidence interval. |
nint |
The number of points at which the profile likelihood is evaluated. |
Details
We provide a coercing of our fits of S4-classes "GPDEstimate"
and "GEVEstimate" to the (S3-)classes gpd.fit and gev.fit
of package ismev (the latter being cast to an S4 class, internally, in
our package.
Value
For gpd.fit, gev.fit
(quoted from package ismev:
For stationary models four plots are produced; a probability plot,
a quantile plot, a return level plot and a histogram of data with
fitted density.
For non-stationary models two plots are produced; a residual probability plot and a residual quantile plot.
For gpd.prof, gev.prof
(quoted from package ismev:
A plot of the profile likelihood is produced, with a horizontal
line representing a profile confidence interval with confidence
coefficient conf.
Author(s)
Peter Ruckdeschel peter.ruckdeschel@uni-oldenburg.de
References
ismev: An Introduction to Statistical Modeling of Extreme Values. R package version 1.39. https://CRAN.R-project.org/package=ismev; original S functions written by Janet E. Heffernan with R port and R documentation provided by Alec G. Stephenson. (2012).
Coles, S. (2001). An introduction to statistical modeling of extreme values. London: Springer.
Examples
if(require(ismev)){
## from ismev
data(portpirie)
data(rain)
detach(package:ismev)
ppfit <- ismev::gev.fit(portpirie[,2])
gev.diag(ppfit)
##
(mlE <- MLEstimator(portpirie[,2], GEVFamilyMuUnknown(withPos=FALSE)))
gev.diag(mlE)
## not tested on CRAN because it takes some time...
gev.prof(mlE, m = 10, 4.1, 5)
gev.profxi(mlE, -0.3, 0.3)
rnfit <- ismev::gpd.fit(rain,10)
gpd.diag(rnfit)
##
mlE2 <- MLEstimator(rain[rain>10], GParetoFamily(loc=10))
gpd.diag(mlE2)
gpd.prof(mlE2, m = 10, 55, 77)
gpd.profxi(mlE2, -0.02, 0.02)
}