GParetoFamily {RobExtremes} | R Documentation |
Generating function for Generalized Pareto families
Description
Generates an object of class "GParetoFamily"
which
represents a Generalized Pareto family.
Usage
GParetoFamily(loc = 0, scale = 1, shape = 0.5, of.interest = c("scale", "shape"),
p = NULL, N = NULL, trafo = NULL, start0Est = NULL, withPos = TRUE,
secLevel = 0.7, withCentL2 = FALSE, withL2derivDistr = FALSE,
withMDE = FALSE, ..ignoreTrafo = FALSE)
Arguments
loc |
real: known/fixed threshold/location parameter |
scale |
positive real: scale parameter |
shape |
positive real: shape parameter |
of.interest |
character: which parameters, transformations are of interest. |
p |
real or NULL: probability needed for quantile and expected shortfall |
N |
real or NULL: expected frequency for expected loss |
trafo |
matrix or NULL: transformation of the parameter |
start0Est |
startEstimator — if |
withPos |
logical of length 1: Is shape restricted to positive values? |
secLevel |
a numeric of length 1:
In the ideal GEV model, for each observastion |
withCentL2 |
logical: shall L2 derivative be centered by substracting
the E()? Defaults to |
withL2derivDistr |
logical: shall the distribution of the L2 derivative
be computed? Defaults to |
withMDE |
logical: should Minimum Distance Estimators be used to
find a good starting value for the parameter search?
Defaults to |
..ignoreTrafo |
logical: only used internally in |
Details
The slots of the corresponding L2 differentiable parameteric family are filled.
Value
Object of class "GParetoFamily"
Author(s)
Matthias Kohl Matthias.Kohl@stamats.de
Peter Ruckdeschel peter.ruckdeschel@uni-oldenburg.de
Nataliya Horbenko nhorbenko@gmail.com
References
Kohl, M. (2005) Numerical Contributions to
the Asymptotic Theory of Robustness. Bayreuth: Dissertation.
https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf.
Kohl, M., Ruckdeschel, P., and Rieder, H. (2010):
Infinitesimally Robust Estimation in General Smoothly Parametrized Models.
Stat. Methods Appl., 19, 333-354.
doi:10.1007/s10260-010-0133-0.
Ruckdeschel, P. and Horbenko, N. (2013): Optimally-Robust Estimators in Generalized
Pareto Models. Statistics. 47(4),
762-791.
doi:10.1080/02331888.2011.628022.
Ruckdeschel, P. and Horbenko, N. (2012): Yet another breakdown point notion:
EFSBP –illustrated at scale-shape models. Metrika, 75(8),
1025–1047. doi:10.1007/s00184-011-0366-4.
See Also
Examples
(G1 <- GParetoFamily())
FisherInfo(G1)
checkL2deriv(G1)