| E {RobExtremes} | R Documentation |
Generic Function for the Computation of (Conditional) Expectations
Description
Generic function for the computation of (conditional) expectations.
Usage
E(object, fun, cond, ...)
## S4 method for signature 'GEV,missing,missing'
E(object, low = NULL, upp = NULL, ..., diagnostic = FALSE)
## S4 method for signature
## 'DistributionsIntegratingByQuantiles,function,missing'
E(object,
fun, low = NULL, upp = NULL,
rel.tol= getdistrExOption("ErelativeTolerance"),
lowerTruncQuantile = getdistrExOption("ElowerTruncQuantile"),
upperTruncQuantile = getdistrExOption("EupperTruncQuantile"),
IQR.fac = max(1e4,getdistrExOption("IQR.fac")), ..., diagnostic = FALSE)
## S4 method for signature 'Gumbel,missing,missing'
E(object, low = NULL, upp = NULL, ..., diagnostic = FALSE)
## S4 method for signature 'GPareto,missing,missing'
E(object, low = NULL, upp = NULL, ..., diagnostic = FALSE)
## S4 method for signature 'GPareto,function,missing'
E(object, fun, low = NULL, upp = NULL,
rel.tol= getdistrExOption("ErelativeTolerance"),
lowerTruncQuantile = getdistrExOption("ElowerTruncQuantile"),
upperTruncQuantile = getdistrExOption("EupperTruncQuantile"),
IQR.fac = max(1e4,getdistrExOption("IQR.fac")), ..., diagnostic = FALSE)
## S4 method for signature 'Pareto,missing,missing'
E(object, low = NULL, upp = NULL, ..., diagnostic = FALSE)
Arguments
object |
object of class |
fun |
if missing the (conditional) expectation is computed
else the (conditional) expection of |
cond |
if not missing the conditional expectation
given |
rel.tol |
relative tolerance for |
low |
lower bound of integration range. |
upp |
upper bound of integration range. |
lowerTruncQuantile |
lower quantile for quantile based integration range. |
upperTruncQuantile |
upper quantile for quantile based integration range. |
IQR.fac |
factor for scale based integration range (i.e.;
median of the distribution |
... |
additional arguments to |
diagnostic |
logical; if |
Details
The precision of the computations can be controlled via
certain global options; cf. distrExOptions.
Also note that arguments low and upp should be given as
named arguments in order to prevent them to be matched by arguments
fun or cond. Also the result, when arguments
low or upp is given, is the unconditional value of the
expectation; no conditioning with respect to low <= object <= upp
is done. To be able to use integration after transformation via the
respective probability transformation to [0,1], we introduce a class union
"DistributionsIntegratingByQuantiles", which currently comprises
classes "GPareto", "Pareto", "Weibull", "GEV".
In addition, the specific method for "GPareto", "function", "missing"
uses integration on [0,1] via the substitution method (y := log(x)).
Diagnostics on the involved integrations are available
if argument diagnostic is TRUE. Then there is attribute
diagnostic attached to the return value, which may be inspected
and accessed through showDiagnostic and
getDiagnostic.
Value
The expectation is computed.
Methods
- object = "Gumbel", fun = "missing", cond = "missing":
-
exact evaluation using explicit expressions.
- object = "GPareto", fun = "missing", cond = "missing":
-
exact evaluation using explicit expressions.
- object = "DistributionsIntegratingByQuantiles", fun = "function", cond = "missing":
-
use probability transform, i.e., a substitution
y = p(object)(x)for numerical integration. - object = "GPareto", fun = "function", cond = "missing":
-
use substitution method (y := log(x)) for numerical integration.
- object = "Pareto", fun = "missing", cond = "missing":
-
exact evaluation using explicit expressions.
Author(s)
Matthias Kohl Matthias.Kohl@stamats.de and Peter Ruckdeschel peter.ruckdeschel@uni-oldenburg.de
See Also
distrExIntegrate, m1df, m2df,
Distribution-class
Examples
GP <- GPareto(shape=0.3)
E(GP)
E(GP, fun = function(x){2*x^2}) ## uses the log trafo
P <- Pareto()
E(P)
E(P,fun = function(x){1/(x^2+1)})