| plot.RoBMA {RoBMA} | R Documentation | 
Plots a fitted RoBMA object
Description
plot.RoBMA allows to visualize
different "RoBMA" object parameters in various
ways. See type for the different model types.
Usage
## S3 method for class 'RoBMA'
plot(
  x,
  parameter = "mu",
  conditional = FALSE,
  plot_type = "base",
  prior = FALSE,
  output_scale = NULL,
  rescale_x = FALSE,
  show_data = TRUE,
  dots_prior = NULL,
  ...
)
Arguments
| x | a fitted RoBMA object | 
| parameter | a parameter to be plotted. Defaults to
 | 
| conditional | whether conditional estimates should be
plotted. Defaults to  | 
| plot_type | whether to use a base plot  | 
| prior | whether prior distribution should be added to
figure. Defaults to  | 
| output_scale | transform the effect sizes and the meta-analytic
effect size estimate to a different scale. Defaults to  | 
| rescale_x | whether the x-axis of the  | 
| show_data | whether the study estimates and standard
errors should be show in the  | 
| dots_prior | list of additional graphical arguments
to be passed to the plotting function of the prior
distribution. Supported arguments are  | 
| ... | list of additional graphical arguments
to be passed to the plotting function. Supported arguments
are  | 
Value
plot.RoBMA returns either NULL if plot_type = "base"
or an object object of class 'ggplot2' if plot_type = "ggplot2".
See Also
Examples
## Not run: 
# using the example data from Anderson et al. 2010 and fitting the default model
# (note that the model can take a while to fit)
fit <- RoBMA(r = Anderson2010$r, n = Anderson2010$n, study_names = Anderson2010$labels)
### ggplot2 version of all of the plots can be obtained by adding 'model_type = "ggplot"
# the 'plot' function allows to visualize the results of a fitted RoBMA object, for example;
# the model-averaged effect size estimate
plot(fit, parameter = "mu")
# and show both the prior and posterior distribution
plot(fit, parameter = "mu", prior = TRUE)
# conditional plots can by obtained by specifying
plot(fit, parameter = "mu", conditional = TRUE)
# plotting function also allows to visualize the weight function
plot(fit, parameter = "weightfunction")
# re-scale the x-axis
plot(fit, parameter = "weightfunction", rescale_x = TRUE)
# or visualize the PET-PEESE regression line
plot(fit, parameter = "PET-PEESE")
## End(Not run)