check_setup.reg {RoBMA} | R Documentation |
Prints summary of "RoBMA.reg"
ensemble implied by the specified priors
and formula
Description
check_setup
prints summary of "RoBMA.reg"
ensemble
implied by the specified prior distributions. It is useful for checking
the ensemble configuration prior to fitting all of the models.
check_setup
prints summary of "RoBMA.reg"
ensemble
implied by the specified prior distributions. It is useful for checking
the ensemble configuration prior to fitting all of the models.
Usage
check_setup.reg(
formula,
data,
test_predictors = TRUE,
study_names = NULL,
study_ids = NULL,
transformation = if (any(colnames(data) != "y")) "fishers_z" else "none",
prior_scale = if (any(colnames(data) != "y")) "cohens_d" else "none",
standardize_predictors = TRUE,
effect_direction = "positive",
priors = NULL,
model_type = NULL,
priors_effect = prior(distribution = "normal", parameters = list(mean = 0, sd = 1)),
priors_heterogeneity = prior(distribution = "invgamma", parameters = list(shape = 1,
scale = 0.15)),
priors_bias = list(prior_weightfunction(distribution = "two.sided", parameters =
list(alpha = c(1, 1), steps = c(0.05)), prior_weights = 1/12),
prior_weightfunction(distribution = "two.sided", parameters = list(alpha = c(1, 1,
1), steps = c(0.05, 0.1)), prior_weights = 1/12), prior_weightfunction(distribution =
"one.sided", parameters = list(alpha = c(1, 1), steps = c(0.05)), prior_weights =
1/12), prior_weightfunction(distribution = "one.sided", parameters = list(alpha =
c(1, 1, 1), steps = c(0.025, 0.05)), prior_weights = 1/12),
prior_weightfunction(distribution = "one.sided", parameters = list(alpha = c(1, 1,
1), steps = c(0.05, 0.5)), prior_weights = 1/12), prior_weightfunction(distribution =
"one.sided", parameters = list(alpha = c(1, 1, 1, 1), steps = c(0.025, 0.05, 0.5)),
prior_weights = 1/12), prior_PET(distribution = "Cauchy", parameters = list(0, 1),
truncation = list(0, Inf), prior_weights = 1/4), prior_PEESE(distribution = "Cauchy",
parameters = list(0, 5), truncation = list(0, Inf), prior_weights = 1/4)),
priors_effect_null = prior(distribution = "point", parameters = list(location = 0)),
priors_heterogeneity_null = prior(distribution = "point", parameters = list(location =
0)),
priors_bias_null = prior_none(),
priors_hierarchical = prior("beta", parameters = list(alpha = 1, beta = 1)),
priors_hierarchical_null = NULL,
prior_covariates = prior("normal", parameters = list(mean = 0, sd = 0.25)),
prior_covariates_null = prior("spike", parameters = list(location = 0)),
prior_factors = prior_factor("mnormal", parameters = list(mean = 0, sd = 0.25),
contrast = "meandif"),
prior_factors_null = prior("spike", parameters = list(location = 0)),
models = FALSE,
silent = FALSE,
...
)
check_setup.RoBMA.reg(
formula,
data,
test_predictors = TRUE,
study_names = NULL,
study_ids = NULL,
transformation = if (any(colnames(data) != "y")) "fishers_z" else "none",
prior_scale = if (any(colnames(data) != "y")) "cohens_d" else "none",
standardize_predictors = TRUE,
effect_direction = "positive",
priors = NULL,
model_type = NULL,
priors_effect = prior(distribution = "normal", parameters = list(mean = 0, sd = 1)),
priors_heterogeneity = prior(distribution = "invgamma", parameters = list(shape = 1,
scale = 0.15)),
priors_bias = list(prior_weightfunction(distribution = "two.sided", parameters =
list(alpha = c(1, 1), steps = c(0.05)), prior_weights = 1/12),
prior_weightfunction(distribution = "two.sided", parameters = list(alpha = c(1, 1,
1), steps = c(0.05, 0.1)), prior_weights = 1/12), prior_weightfunction(distribution =
"one.sided", parameters = list(alpha = c(1, 1), steps = c(0.05)), prior_weights =
1/12), prior_weightfunction(distribution = "one.sided", parameters = list(alpha =
c(1, 1, 1), steps = c(0.025, 0.05)), prior_weights = 1/12),
prior_weightfunction(distribution = "one.sided", parameters = list(alpha = c(1, 1,
1), steps = c(0.05, 0.5)), prior_weights = 1/12), prior_weightfunction(distribution =
"one.sided", parameters = list(alpha = c(1, 1, 1, 1), steps = c(0.025, 0.05, 0.5)),
prior_weights = 1/12), prior_PET(distribution = "Cauchy", parameters = list(0, 1),
truncation = list(0, Inf), prior_weights = 1/4), prior_PEESE(distribution = "Cauchy",
parameters = list(0, 5), truncation = list(0, Inf), prior_weights = 1/4)),
priors_effect_null = prior(distribution = "point", parameters = list(location = 0)),
priors_heterogeneity_null = prior(distribution = "point", parameters = list(location =
0)),
priors_bias_null = prior_none(),
priors_hierarchical = prior("beta", parameters = list(alpha = 1, beta = 1)),
priors_hierarchical_null = NULL,
prior_covariates = prior("normal", parameters = list(mean = 0, sd = 0.25)),
prior_covariates_null = prior("spike", parameters = list(location = 0)),
prior_factors = prior_factor("mnormal", parameters = list(mean = 0, sd = 0.25),
contrast = "meandif"),
prior_factors_null = prior("spike", parameters = list(location = 0)),
models = FALSE,
silent = FALSE,
...
)
check_setup.reg(
formula,
data,
test_predictors = TRUE,
study_names = NULL,
study_ids = NULL,
transformation = if (any(colnames(data) != "y")) "fishers_z" else "none",
prior_scale = if (any(colnames(data) != "y")) "cohens_d" else "none",
standardize_predictors = TRUE,
effect_direction = "positive",
priors = NULL,
model_type = NULL,
priors_effect = prior(distribution = "normal", parameters = list(mean = 0, sd = 1)),
priors_heterogeneity = prior(distribution = "invgamma", parameters = list(shape = 1,
scale = 0.15)),
priors_bias = list(prior_weightfunction(distribution = "two.sided", parameters =
list(alpha = c(1, 1), steps = c(0.05)), prior_weights = 1/12),
prior_weightfunction(distribution = "two.sided", parameters = list(alpha = c(1, 1,
1), steps = c(0.05, 0.1)), prior_weights = 1/12), prior_weightfunction(distribution =
"one.sided", parameters = list(alpha = c(1, 1), steps = c(0.05)), prior_weights =
1/12), prior_weightfunction(distribution = "one.sided", parameters = list(alpha =
c(1, 1, 1), steps = c(0.025, 0.05)), prior_weights = 1/12),
prior_weightfunction(distribution = "one.sided", parameters = list(alpha = c(1, 1,
1), steps = c(0.05, 0.5)), prior_weights = 1/12), prior_weightfunction(distribution =
"one.sided", parameters = list(alpha = c(1, 1, 1, 1), steps = c(0.025, 0.05, 0.5)),
prior_weights = 1/12), prior_PET(distribution = "Cauchy", parameters = list(0, 1),
truncation = list(0, Inf), prior_weights = 1/4), prior_PEESE(distribution = "Cauchy",
parameters = list(0, 5), truncation = list(0, Inf), prior_weights = 1/4)),
priors_effect_null = prior(distribution = "point", parameters = list(location = 0)),
priors_heterogeneity_null = prior(distribution = "point", parameters = list(location =
0)),
priors_bias_null = prior_none(),
priors_hierarchical = prior("beta", parameters = list(alpha = 1, beta = 1)),
priors_hierarchical_null = NULL,
prior_covariates = prior("normal", parameters = list(mean = 0, sd = 0.25)),
prior_covariates_null = prior("spike", parameters = list(location = 0)),
prior_factors = prior_factor("mnormal", parameters = list(mean = 0, sd = 0.25),
contrast = "meandif"),
prior_factors_null = prior("spike", parameters = list(location = 0)),
models = FALSE,
silent = FALSE,
...
)
Arguments
formula |
a formula for the meta-regression model |
data |
a data object created by the |
test_predictors |
vector of predictor names that will be test
(i.e., assigned both the null and alternative prior distributions).
Defaults to |
study_names |
an optional argument with the names of the studies |
study_ids |
an optional argument specifying dependency between the
studies (for using a multilevel model). Defaults to |
transformation |
transformation to be applied to the supplied
effect sizes before fitting the individual models. Defaults to
|
prior_scale |
a scale used to define priors. Defaults to |
standardize_predictors |
whether continuous predictors should be standardized prior to
estimating the model. Defaults to |
effect_direction |
the expected direction of the effect. The one-sided
selection sets the weights omega to 1 to significant results in the expected
direction. Defaults to |
priors |
named list of prior distributions for each predictor
(with names corresponding to the predictors). It allows users to
specify both the null and alternative hypothesis prior distributions
for each predictor by assigning the corresponding element of the named
list with another named list (with |
model_type |
string specifying the RoBMA ensemble. Defaults to |
priors_effect |
list of prior distributions for the effect size ( |
priors_heterogeneity |
list of prior distributions for the heterogeneity |
priors_bias |
list of prior distributions for the publication bias adjustment
component that will be treated as belonging to the alternative hypothesis.
Defaults to |
priors_effect_null |
list of prior distributions for the effect size ( |
priors_heterogeneity_null |
list of prior distributions for the heterogeneity |
priors_bias_null |
list of prior weight functions for the |
priors_hierarchical |
list of prior distributions for the correlation of random effects
( |
priors_hierarchical_null |
list of prior distributions for the correlation of random effects
( |
prior_covariates |
a prior distributions for the regression parameter
of continuous covariates on the effect size under the alternative hypothesis
(unless set explicitly in |
prior_covariates_null |
a prior distributions for the regression parameter
of continuous covariates on the effect size under the null hypothesis
(unless set explicitly in |
prior_factors |
a prior distributions for the regression parameter
of categorical covariates on the effect size under the alternative hypothesis
(unless set explicitly in |
prior_factors_null |
a prior distributions for the regression parameter
of categorical covariates on the effect size under the null hypothesis
(unless set explicitly in |
models |
should the models' details be printed. |
silent |
do not print the results. |
... |
additional arguments. |
Value
check_setup.reg
invisibly returns list of summary tables.
check_setup.reg
invisibly returns list of summary tables.