BiBMA {RoBMA} | R Documentation |
Estimate a Bayesian Model-Averaged Meta-Analysis of Binomial Data
Description
BiBMA
estimate a Binomial Bayesian
model-averaged meta-analysis. The interface allows a complete customization of
the ensemble with different prior (or list of prior) distributions
for each component.
Usage
BiBMA(
x1,
x2,
n1,
n2,
study_names = NULL,
study_ids = NULL,
priors_effect = prior(distribution = "student", parameters = list(location = 0, scale =
0.58, df = 4)),
priors_heterogeneity = prior(distribution = "invgamma", parameters = list(shape = 1.77,
scale = 0.55)),
priors_effect_null = prior(distribution = "point", parameters = list(location = 0)),
priors_heterogeneity_null = prior(distribution = "point", parameters = list(location =
0)),
priors_baseline = NULL,
priors_baseline_null = prior_factor("beta", parameters = list(alpha = 1, beta = 1),
contrast = "independent"),
chains = 3,
sample = 5000,
burnin = 2000,
adapt = 500,
thin = 1,
parallel = FALSE,
autofit = TRUE,
autofit_control = set_autofit_control(),
convergence_checks = set_convergence_checks(),
save = "all",
seed = NULL,
silent = TRUE,
...
)
Arguments
x1 |
a vector with the number of successes in the first group |
x2 |
a vector with the number of successes in the second group |
n1 |
a vector with the number of observations in the first group |
n2 |
a vector with the number of observations in the second group |
study_names |
an optional argument with the names of the studies |
study_ids |
an optional argument specifying dependency between the
studies (for using a multilevel model). Defaults to |
priors_effect |
list of prior distributions for the effect size ( |
priors_heterogeneity |
list of prior distributions for the heterogeneity |
priors_effect_null |
list of prior distributions for the effect size ( |
priors_heterogeneity_null |
list of prior distributions for the heterogeneity |
priors_baseline |
prior distributions for the alternative hypothesis about
intercepts ( |
priors_baseline_null |
prior distributions for the null hypothesis about
intercepts ( |
chains |
a number of chains of the MCMC algorithm. |
sample |
a number of sampling iterations of the MCMC algorithm.
Defaults to |
burnin |
a number of burnin iterations of the MCMC algorithm.
Defaults to |
adapt |
a number of adaptation iterations of the MCMC algorithm.
Defaults to |
thin |
a thinning of the chains of the MCMC algorithm. Defaults to
|
parallel |
whether the individual models should be fitted in parallel.
Defaults to |
autofit |
whether the model should be fitted until the convergence
criteria (specified in |
autofit_control |
allows to pass autofit control settings with the
|
convergence_checks |
automatic convergence checks to assess the fitted
models, passed with |
save |
whether all models posterior distributions should be kept
after obtaining a model-averaged result. Defaults to |
seed |
a seed to be set before model fitting, marginal likelihood
computation, and posterior mixing for reproducibility of results. Defaults
to |
silent |
whether all print messages regarding the fitting process
should be suppressed. Defaults to |
... |
additional arguments. |
Details
See RoBMA()
for more details.
Value
NoBMA
returns an object of class 'RoBMA'.
See Also
RoBMA()
, summary.RoBMA()
, update.RoBMA()
, check_setup()