chooseMpfr {Rmpfr} | R Documentation |
Binomial Coefficients and Pochhammer Symbol aka Rising Factorial
Description
Compute binomial coefficients, chooseMpfr(a,n)
being
mathematically the same as choose(a,n)
, but using high
precision (MPFR) arithmetic.
chooseMpfr.all(n)
means the vector choose(n, 1:n)
,
using enough bits for exact computation via MPFR.
However, chooseMpfr.all()
is now deprecated in favor of
chooseZ
from package gmp, as that is now
vectorized.
pochMpfr()
computes the Pochhammer symbol or “rising
factorial”, also called the “Pochhammer function”,
“Pochhammer polynomial”, “ascending factorial”,
“rising sequential product” or “upper factorial”,
x^{(n)}=x(x+1)(x+2)\cdots(x+n-1)= \frac{(x+n-1)!}{(x-1)!} = \frac{\Gamma(x+n)}{\Gamma(x)}.
Usage
chooseMpfr (a, n, rnd.mode = c("N","D","U","Z","A"))
chooseMpfr.all(n, precBits=NULL, k0=1, alternating=FALSE)
pochMpfr(a, n, rnd.mode = c("N","D","U","Z","A"))
Arguments
a |
a numeric or |
n |
an |
rnd.mode |
a 1-letter string specifying how rounding
should happen at C-level conversion to MPFR, see |
precBits |
integer or NULL for increasing the default precision of the result. |
k0 |
integer scalar |
alternating |
logical, for |
Value
For
chooseMpfr()
,pochMpfr()
:an
mpfr
vector of lengthmax(length(a), length(n))
;chooseMpfr.all(n, k0)
:a
mpfr
vector of lengthn-k0+1
, of binomial coefficientsC_{n,m}
or, ifalternating
is true,(-1)^m\cdot C_{n,m}
form \in
k0:n
.
Note
Currently this works via a (C level) for(i in 1:n)
-loop which
really slow for large n
, say 10^6
, with computational cost
O(n^2)
. In such cases, if you need high precision
choose(a,n)
(or Pochhammer(a,n)) for large n
, preferably
work with the corresponding factorial(mpfr(..))
, or
gamma(mpfr(..))
terms.
See Also
choose(n,m)
(base R) computes the binomial coefficient
C_{n,m}
which can also be expressed via Pochhammer
symbol as
C_{n,m} = (n-m+1)^{(m)}/m!
.
chooseZ
from package gmp;
for now,
factorialMpfr
.
For (alternating) binomial sums, directly use
sumBinomMpfr
, as that is potentially
more efficient.
Examples
pochMpfr(100, 4) == 100*101*102*103 # TRUE
a <- 100:110
pochMpfr(a, 10) # exact (but too high precision)
x <- mpfr(a, 70)# should be enough
(px <- pochMpfr(x, 10)) # the same as above (needing only 70 bits)
stopifnot(pochMpfr(a, 10) == px,
px[1] ==prod(mpfr(100:109, 100)))# used to fail
(c1 <- chooseMpfr(1000:997, 60)) # -> automatic "correct" precision
stopifnot(all.equal(c1, choose(1000:997, 60), tolerance=1e-12))
## --- Experimenting & Checking
n.set <- c(1:10, 20, 50:55, 100:105, 200:203, 300:303, 500:503,
699:702, 999:1001)
if(!Rmpfr:::doExtras()) { ## speed up: smaller set
n. <- n.set[-(1:10)]
n.set <- c(1:10, n.[ c(TRUE, diff(n.) > 1)])
}
C1 <- C2 <- numeric(length(n.set))
for(i.n in seq_along(n.set)) {
cat(n <- n.set[i.n],":")
C1[i.n] <- system.time(c.c <- chooseMpfr.all(n) )[1]
C2[i.n] <- system.time(c.2 <- chooseMpfr(n, 1:n))[1]
stopifnot(is.whole(c.c), c.c == c.2,
if(n > 60) TRUE else all.equal(c.c, choose(n, 1:n), tolerance = 1e-15))
cat(" [Ok]\n")
}
matplot(n.set, cbind(C1,C2), type="b", log="xy",
xlab = "n", ylab = "system.time(.) [s]")
legend("topleft", c("chooseMpfr.all(n)", "chooseMpfr(n, 1:n)"),
pch=as.character(1:2), col=1:2, lty=1:2, bty="n")
## Currently, chooseMpfr.all() is faster only for large n (>= 300)
## That would change if we used C-code for the *.all() version
## If you want to measure more:
measureMore <- TRUE
measureMore <- FALSE
if(measureMore) { ## takes ~ 2 minutes (on "lynne", Intel i7-7700T, ~2019)
n.s <- 2^(5:20)
r <- lapply(n.s, function(n) {
N <- ceiling(10000/n)
cat(sprintf("n=%9g => N=%d: ",n,N))
ct <- system.time(C <- replicate(N, chooseMpfr(n, n/2)))
cat("[Ok]\n")
list(C=C, ct=ct/N)
})
print(ct.n <- t(sapply(r, `[[`, "ct")))
hasSfS <- requireNamespace("sfsmisc")
plot(ct.n[,"user.self"] ~ n.s, xlab=quote(n), ylab="system.time(.) [s]",
main = "CPU Time for chooseMpfr(n, n/2)",
log ="xy", type = "b", axes = !hasSfS)
if(hasSfS) for(side in 1:2) sfsmisc::eaxis(side)
summary(fm <- lm(log(ct.n[,"user.self"]) ~ log(n.s), subset = n.s >= 10^4))
## --> slope ~= 2 ==> It's O(n^2)
nn <- 2^seq(11,21, by=1/16) ; Lcol <- adjustcolor(2, 1/2)
bet <- coef(fm)
lines(nn, exp(predict(fm, list(n.s = nn))), col=Lcol, lwd=3)
text(500000,1, substitute(AA %*% n^EE,
list(AA = signif(exp(bet[1]),3),
EE = signif( bet[2], 3))), col=2)
} # measure more