lsolve.gmres {Rlinsolve} | R Documentation |
Generalized Minimal Residual method
Description
GMRES is a generic iterative solver for a nonsymmetric system of linear equations. As its name suggests, it approximates the solution using Krylov vectors with minimal residuals.
Usage
lsolve.gmres(
A,
B,
xinit = NA,
reltol = 1e-05,
maxiter = 1000,
preconditioner = diag(ncol(A)),
restart = (ncol(A) - 1),
verbose = TRUE
)
Arguments
A |
an |
B |
a vector of length |
xinit |
a length- |
reltol |
tolerance level for stopping iterations. |
maxiter |
maximum number of iterations allowed. |
preconditioner |
an |
restart |
the number of iterations before restart. |
verbose |
a logical; |
Value
a named list containing
- x
solution; a vector of length
n
or a matrix of size(n\times k)
.- iter
the number of iterations required.
- errors
a vector of errors for stopping criterion.
References
Saad Y, Schultz MH (1986). “GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems.” SIAM Journal on Scientific and Statistical Computing, 7(3), 856–869. ISSN 0196-5204, 2168-3417.
Examples
## Overdetermined System
set.seed(100)
A = matrix(rnorm(10*5),nrow=10)
x = rnorm(5)
b = A%*%x
out1 = lsolve.cg(A,b)
out3_1 = lsolve.gmres(A,b,restart=2)
out3_2 = lsolve.gmres(A,b,restart=3)
out3_3 = lsolve.gmres(A,b,restart=4)
matout = cbind(matrix(x),out1$x, out3_1$x, out3_2$x, out3_3$x);
colnames(matout) = c("true x","CG", "GMRES(2)", "GMRES(3)", "GMRES(4)")
print(matout)