lsolve.jacobi {Rlinsolve} | R Documentation |
Jacobi method
Description
Jacobi method is an iterative algorithm for solving a system of linear equations,
with a decomposition A = D+R
where D
is a diagonal matrix.
For a square matrix A
, it is required to be diagonally dominant. For an overdetermined system where nrow(A)>ncol(A)
,
it is automatically transformed to the normal equation. Underdetermined system -
nrow(A)<ncol(A)
- is not supported.
Usage
lsolve.jacobi(
A,
B,
xinit = NA,
reltol = 1e-05,
maxiter = 1000,
weight = 2/3,
adjsym = TRUE,
verbose = TRUE
)
Arguments
A |
an |
B |
a vector of length |
xinit |
a length- |
reltol |
tolerance level for stopping iterations. |
maxiter |
maximum number of iterations allowed. |
weight |
a real number in |
adjsym |
a logical; |
verbose |
a logical; |
Value
a named list containing
- x
solution; a vector of length
n
or a matrix of size(n\times k)
.- iter
the number of iterations required.
- errors
a vector of errors for stopping criterion.
References
Demmel JW (1997). Applied Numerical Linear Algebra. Society for Industrial and Applied Mathematics. ISBN 978-0-89871-389-3 978-1-61197-144-6.
Examples
## Overdetermined System
set.seed(100)
A = matrix(rnorm(10*5),nrow=10)
x = rnorm(5)
b = A%*%x
out1 = lsolve.jacobi(A,b,weight=1,verbose=FALSE) # unweighted
out2 = lsolve.jacobi(A,b,verbose=FALSE) # weight of 0.66
out3 = lsolve.jacobi(A,b,weight=0.5,verbose=FALSE) # weight of 0.50
print("* lsolve.jacobi : overdetermined case example")
print(paste("* error for unweighted Jacobi case : ",norm(out1$x-x)))
print(paste("* error for 0.66 weighted Jacobi case : ",norm(out2$x-x)))
print(paste("* error for 0.50 weighted Jacobi case : ",norm(out3$x-x)))