Exponential {Rlab} | R Documentation |
The Exponential Distribution
Description
Density, distribution function, quantile function and random
generation for the exponential distribution with mean beta
or 1/rate
).
This special Rlab implementation allows the parameter beta
to be used, to match the function description often found in textbooks.
Usage
dexp(x, rate = 1, beta = 1/rate, log = FALSE)
pexp(q, rate = 1, beta = 1/rate, lower.tail = TRUE, log.p = FALSE)
qexp(p, rate = 1, beta = 1/rate, lower.tail = TRUE, log.p = FALSE)
rexp(n, rate = 1, beta = 1/rate)
Arguments
x , q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
beta |
vector of means. |
rate |
vector of rates. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
Details
If beta
(or rate
) is not specified, it assumes the
default value of 1
.
The exponential distribution with rate \lambda
has density
f(x) = \lambda {e}^{- \lambda x}
for x \ge 0
.
Value
dexp
gives the density,
pexp
gives the distribution function,
qexp
gives the quantile function, and
rexp
generates random deviates.
Note
The cumulative hazard H(t) = - \log(1 - F(t))
is -pexp(t, r, lower = FALSE, log = TRUE)
.
References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth \& Brooks/Cole.
See Also
exp
for the exponential function,
dgamma
for the gamma distribution and
dweibull
for the Weibull distribution, both of which
generalize the exponential.
Examples
dexp(1) - exp(-1) #-> 0