RivivcA {Rivivc} | R Documentation |
Level A linear correlation for a single formulation
Description
This is the major function to be called where numerical convolution ad/or deconvolution might be used for a linear in vitro in vivo correlation level A. It performes either numerical convolution via /codeNumConv() or deconvolution via /codeNumDeconv() and correlates their results with the known.data object via linear regression lm()
. If you just want raw results of convolution/deconvolution then call explicitely NumConv
or link{NumDeconv}
Usage
RivivcA(known.data, impulse.data, second.profile.data,dose_iv=NULL,dose_po=NULL,
mode = "deconv", explicit.interp = 20, implicit.interp = 10,
optimization.maxit = 200)
Arguments
known.data |
the data matrix to be correlated with; depending on the state of the |
impulse.data |
matrix of the PK profile after the drug i.v. administration |
second.profile.data |
matrix of the second PK profile; depending on the |
dose_iv |
drug dose after i.v. administration; not obligatory but if provided must be in the same units like the dose p.o. |
dose_po |
drug dose after p.o. administration; not obligatory but if provided must be in the same units like the dose i.v. |
mode |
represents the method used here; two states are allowed: |
explicit.interp |
convolution and deconvolution explicit interpolation parameter, namely number of the curve interpolation points |
implicit.interp |
implicit interpolation - a factor multiplying |
optimization.maxit |
maximum number of iterations used by |
Details
The function represents either convolution or deconvolution data together with linear regression of the above functions outputs and known data supplied as a parameter. Please bear in mind that NumDeconv() procedure is iterative and therefore depending on the parameters might require substantial amount of time to converge. Please refer to the NumDeconv
description.
Value
$regression |
returns a whole object of the linear regression - a result from the |
$numeric |
returns results from |
Author(s)
Aleksander Mendyk and Sebastian Polak
See Also
Examples
require(Rivivc)
require(graphics)
#i.v. data
data("impulse")
#p.o. PK profile
data("resp")
#in vitro dissolution for correlation purposes
data("input")
#preparing data matrices
input_mtx<-as.matrix(input)
impulse_mtx<-as.matrix(impulse)
resp_mtx<-as.matrix(resp)
#setting accuracy
accur_explic<-20
accur_implic<-5
#run deconvolution
result<-RivivcA(input_mtx,impulse_mtx,resp_mtx,
explicit.interp=accur_explic,implicit.interp=accur_implic)
summary(result$regression)
print("Raw results of deconvolution")
print(result$numeric$par)
predicted<-predict(result$regression)
deconvolved_data<-unname(predicted)
orig_data<-input_mtx[,2]
dev.new()
plot(orig_data,result$numeric$par[,2])
lines(orig_data,deconvolved_data, type="l", col="blue")
dev.new()
plot(input_mtx)
lines(result$numeric$par, type="l", col="blue")