SCORE2_CKD_scores {RiskScorescvd} | R Documentation |
SCORE2/OP with CKD add-on risk score function for a data frame; SCORE2/OP = Systematic COronary Risk Evaluation /and Older Population CKD = Chronic kidney disease
Description
This function allows you to calculate the SCORE2 and OP score with CKD add-ons (eGFR, ACR, dipstick) row wise in a data frame with the required variables. It would then retrieve a data frame with two extra columns including the calculations and their classifications
Usage
SCORE2_CKD_scores(
data,
Risk.region,
Age = Age,
Gender = Gender,
smoker = smoker,
systolic.bp = systolic.bp,
diabetes = diabetes,
total.chol = total.chol,
total.hdl = total.hdl,
eGFR = eGFR,
ACR = NA,
trace = NA,
addon = "ACR",
classify
)
Arguments
data |
A data frame with all the variables needed for calculation: Age, Gender, smoker, systolic.bp, diabetes, total.chol, total.hdl |
Risk.region |
a character value to set the desired risk region calculations. Categories should include "Low", "Moderate", "High", or "Very high" |
Age |
a numeric vector of age values, in years |
Gender |
a binary character vector of Gender values. Categories should include only 'male' or 'female' |
smoker |
a binary numeric vector, 1 = yes and 0 = no |
systolic.bp |
a numeric vector of systolic blood pressure continuous values |
diabetes |
a binary numeric vector, 1 = yes and 0 = no |
total.chol |
a numeric vector of total cholesterol values, in mmol/L |
total.hdl |
a numeric vector of total high density lipoprotein total.hdl values, in mmol/L |
eGFR |
a numeric vector of total estimated glomerular rate (eGFR) values, in mL/min/1.73m2 |
ACR |
a numeric vector of total urine albumin to creatine ratio (ACR) values, in mg/g. Default set to NA |
trace |
a character vector of urine protein dipstick categories. Categories should include 'negative', 'trace', '1+', '2+', '3+', '4+. Default set to NA |
addon |
set the add-on you wish to calculate. Categories should include only 'ACR' or 'trace'. Default set to 'ACR' |
classify |
set TRUE if wish to add a column with the scores' categories |
Value
A vector with SCORE2/OP score calculations with CKD add-ons and/or a vector of their classifications if indicated
Examples
# Create a data frame or list with the necessary variables
# Set the number of rows
num_rows <- 100
# Create a larger dataset with 100 rows
cohort_xx <- data.frame(
typical_symptoms.num = as.numeric(sample(0:6, num_rows, replace = TRUE)),
ecg.normal = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
abn.repolarisation = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
ecg.st.depression = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
Age = as.numeric(sample(40:85, num_rows, replace = TRUE)),
diabetes = sample(c(1, 0), num_rows, replace = TRUE),
smoker = sample(c(1, 0), num_rows, replace = TRUE),
hypertension = sample(c(1, 0), num_rows, replace = TRUE),
hyperlipidaemia = sample(c(1, 0), num_rows, replace = TRUE),
family.history = sample(c(1, 0), num_rows, replace = TRUE),
atherosclerotic.disease = sample(c(1, 0), num_rows, replace = TRUE),
presentation_hstni = as.numeric(sample(10:100, num_rows, replace = TRUE)),
Gender = sample(c("male", "female"), num_rows, replace = TRUE),
sweating = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
pain.radiation = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
pleuritic = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
palpation = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
ecg.twi = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
second_hstni = as.numeric(sample(1:200, num_rows, replace = TRUE)),
killip.class = as.numeric(sample(1:4, num_rows, replace = TRUE)),
systolic.bp = as.numeric(sample(90:180, num_rows, replace = TRUE)),
heart.rate = as.numeric(sample(0:300, num_rows, replace = TRUE)),
creat = as.numeric(sample(0:4, num_rows, replace = TRUE)),
cardiac.arrest = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
previous.pci = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
previous.cabg = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
aspirin = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
number.of.episodes.24h = as.numeric(sample(0:20, num_rows, replace = TRUE)),
total.chol = as.numeric(round(runif(num_rows, 3.9, 7.2), 1)),
total.hdl = as.numeric(round(runif(num_rows, .8, 2.1), 1)),
Ethnicity = sample(c("white", "black", "asian", "other"), num_rows, replace = TRUE),
eGFR = as.numeric(sample(15:120, num_rows, replace = TRUE)),
ACR = as.numeric(sample(5:1500, num_rows, replace = TRUE)),
trace = sample(c("trace", "1+", "2+", "3+", "4+"), num_rows, replace = TRUE)
)
# Call the function with the cohort_xx
result <- SCORE2_CKD_scores(data = cohort_xx, Risk.region = "Low", addon = "ACR", classify = TRUE)
# Print the results
summary(result$SCORE2_score)
summary(result$SCORE2_strat)