RiskScoresCalc {RiskScorescvd} | R Documentation |
Six commonly used cardiovascular risk scores for the prediction of major cardiac events (MACE)
Description
This function implements seven cardiovascular risk scores row wise in a data frame with the required variables. It would then retrieve a data frame with two extra columns for each risk score including their calculations and classifications
Usage
calc_scores(
data,
typical_symptoms.num = typical_symptoms.num,
ecg.normal = ecg.normal,
abn.repolarisation = abn.repolarisation,
ecg.st.depression = ecg.st.depression,
Age = Age,
diabetes = diabetes,
smoker = smoker,
hypertension = hypertension,
hyperlipidaemia = hyperlipidaemia,
family.history = family.history,
atherosclerotic.disease = atherosclerotic.disease,
presentation_hstni = presentation_hstni,
Gender = Gender,
sweating = sweating,
pain.radiation = pain.radiation,
pleuritic = pleuritic,
palpation = palpation,
ecg.twi = ecg.twi,
second_hstni = second_hstni,
killip.class = killip.class,
heart.rate = heart.rate,
systolic.bp = systolic.bp,
aspirin = aspirin,
number.of.episodes.24h = number.of.episodes.24h,
previous.pci = previous.pci,
creat = creat,
previous.cabg = previous.cabg,
total.chol = total.chol,
total.hdl = total.hdl,
Ethnicity = Ethnicity,
eGFR = eGFR,
ACR = NA,
trace = NA
)
Arguments
data |
A data frame with all the variables needed for calculation: |
typical_symptoms.num |
a numeric vector of the number of typical symptoms; renames alternative column name |
ecg.normal |
a binary numeric vector, 1 = yes and 0 = no; renames alternative column name |
abn.repolarisation |
a binary numeric vector, 1 = yes and 0 = no; renames alternative column name |
ecg.st.depression |
a binary numeric vector, 1 = yes and 0 = no; renames alternative column name |
Age |
a numeric vector of age values, in years; renames alternative column name |
diabetes |
a binary numeric vector, 1 = yes and 0 = no; renames alternative column name |
smoker |
a binary numeric vector, 1 = yes and 0 = no; renames alternative column name |
hypertension |
a binary numeric vector, 1 = yes and 0 = no; renames alternative column name |
hyperlipidaemia |
a binary numeric vector, 1 = yes and 0 = no; renames alternative column name |
family.history |
a binary numeric vector, 1 = yes and 0 = no; renames alternative column name |
atherosclerotic.disease |
a binary numeric vector, 1 = yes and 0 = no; renames alternative column name |
presentation_hstni |
a continuous numeric vector of the troponin levels; renames alternative column name |
Gender |
a binary character vector of sex values. Categories should include only 'male' or 'female'; renames alternative column name |
sweating |
a binary numeric vector, 1 = yes and 0 = no; renames alternative column name |
pain.radiation |
a binary numeric vector, 1 = yes and 0 = no; renames alternative column name |
pleuritic |
a binary numeric vector, 1 = yes and 0 = no; renames alternative column name |
palpation |
a binary numeric vector, 1 = yes and 0 = no; renames alternative column name |
ecg.twi |
a binary numeric vector, 1 = yes and 0 = no; renames alternative column name |
second_hstni |
a binary numeric vector, 1 = yes and 0 = no; renames alternative column name |
killip.class |
a numeric vector of killip class values, 1 to 4; renames alternative column name |
heart.rate |
a numeric vector of heart rate continuous values; renames alternative column name |
systolic.bp |
a numeric vector of systolic blood pressure continuous values; renames alternative column name |
aspirin |
a binary numeric vector, 1 = yes and 0 = no; renames alternative column name |
number.of.episodes.24h |
a numeric vector of number of angina episodes in 24 hours; renames alternative column name |
previous.pci |
a binary numeric vector, 1 = yes and 0 = no; renames alternative column name |
creat |
a continuous numeric vector of the creatine levels |
previous.cabg |
a binary numeric vector, 1 = yes and 0 = no; renames alternative column name |
total.chol |
a numeric vector of total cholesterol values, in mmol/L; renames alternative column name |
total.hdl |
a numeric vector of total high density lipoprotein HDL values, in mmol/L; renames alternative column name |
Ethnicity |
a character vector, 'white', 'black', 'asian', or other |
eGFR |
a numeric vector of total estimated glomerular rate (eGFR) values, in mL/min/1.73m2 |
ACR |
a numeric vector of total urine albumin to creatine ratio (ACR) values, in mg/g. Default set to NA |
trace |
a character vector of urine protein dipstick categories. Categories should include 'negative', 'trace', '1+', '2+', '3+', '4+. Default set to NA |
Value
a data frame with two extra columns including all the cardiovascular risk score calculations and their classifications
Examples
# Create a data frame or list with the necessary variables
# Set the number of rows
num_rows <- 100
# Create a larger dataset with 100 rows
cohort_xx <- data.frame(
typical_symptoms.num = as.numeric(sample(0:6, num_rows, replace = TRUE)),
ecg.normal = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
abn.repolarisation = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
ecg.st.depression = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
Age = as.numeric(sample(30:80, num_rows, replace = TRUE)),
diabetes = sample(c(1, 0), num_rows, replace = TRUE),
smoker = sample(c(1, 0), num_rows, replace = TRUE),
hypertension = sample(c(1, 0), num_rows, replace = TRUE),
hyperlipidaemia = sample(c(1, 0), num_rows, replace = TRUE),
family.history = sample(c(1, 0), num_rows, replace = TRUE),
atherosclerotic.disease = sample(c(1, 0), num_rows, replace = TRUE),
presentation_hstni = as.numeric(sample(10:100, num_rows, replace = TRUE)),
Gender = sample(c("male", "female"), num_rows, replace = TRUE),
sweating = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
pain.radiation = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
pleuritic = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
palpation = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
ecg.twi = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
second_hstni = as.numeric(sample(1:200, num_rows, replace = TRUE)),
killip.class = as.numeric(sample(1:4, num_rows, replace = TRUE)),
systolic.bp = as.numeric(sample(0:300, num_rows, replace = TRUE)),
heart.rate = as.numeric(sample(0:300, num_rows, replace = TRUE)),
creat = as.numeric(sample(0:4, num_rows, replace = TRUE)),
cardiac.arrest = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
previous.pci = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
previous.cabg = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
aspirin = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
number.of.episodes.24h = as.numeric(sample(0:20, num_rows, replace = TRUE)),
total.chol = as.numeric(sample(2:6, num_rows, replace = TRUE)),
total.hdl = as.numeric(sample(2:5, num_rows, replace = TRUE)),
Ethnicity = sample(c("white", "black", "asian", "other"), num_rows, replace = TRUE),
eGFR = as.numeric(sample(15:120, num_rows, replace = TRUE)),
ACR = as.numeric(sample(5:1500, num_rows, replace = TRUE)),
trace = sample(c("trace", "1+", "2+", "3+", "4+"), num_rows, replace = TRUE)
)
# Call the function with the cohort_xx
new_data_frame <- calc_scores(data = cohort_xx)