GRACE_scores {RiskScorescvd} | R Documentation |
GRACE 2.0 score function for data frame; GRACE 2.0 = Global Registry of Acute Coronary Events version 2.0
Description
This function allows you to calculate the GRACE 2.0 score row wise in a data frame with the required variables. It would then retrieve a data frame with two extra columns including the calculations and their classifications
Usage
GRACE_scores(
data,
killip.class = killip.class,
systolic.bp = systolic.bp,
heart.rate = heart.rate,
Age = Age,
creat = creat,
ecg.st.depression = ecg.st.depression,
presentation_hstni = presentation_hstni,
cardiac.arrest = cardiac.arrest,
Gender = Gender,
classify
)
Arguments
data |
A data frame with all the variables needed for calculation: killip.class, systolic.bp, heart.rate, Age, creat, ecg.st.depression, presentation_hstni, cardiac.arrest, Gender, classify |
killip.class |
a numeric vector of killip class values, 1 to 4 |
systolic.bp |
a numeric vector of systolic blood pressure continuous values |
heart.rate |
a numeric vector of heart rate continuous values |
Age |
a numeric vector of age values, in years |
creat |
a continuous numeric vector of the creatine levels |
ecg.st.depression |
a binary numeric vector, 1 = yes and 0 = no |
presentation_hstni |
a continuous numeric vector of the troponin levels |
cardiac.arrest |
a binary numeric vector, 1 = yes and 0 = no |
Gender |
a binary character vector of sex values. Categories should include only 'male' or 'female' |
classify |
a logical parameter to indicate classification of Scores "TRUE" or none "FALSE" |
Value
data frame with two extra columns including the 'GRACE_score' calculations and their classifications, 'GRACE_strat'
Examples
# Create a data frame or list with the necessary variables
# Set the number of rows
num_rows <- 100
# Create a larger dataset with 100 rows
cohort_xx <- data.frame(
typical_symptoms.num = as.numeric(sample(0:6, num_rows, replace = TRUE)),
ecg.normal = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
abn.repolarisation = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
ecg.st.depression = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
Age = as.numeric(sample(30:80, num_rows, replace = TRUE)),
diabetes = sample(c(1, 0), num_rows, replace = TRUE),
smoker = sample(c(1, 0), num_rows, replace = TRUE),
hypertension = sample(c(1, 0), num_rows, replace = TRUE),
hyperlipidaemia = sample(c(1, 0), num_rows, replace = TRUE),
family.history = sample(c(1, 0), num_rows, replace = TRUE),
atherosclerotic.disease = sample(c(1, 0), num_rows, replace = TRUE),
presentation_hstni = as.numeric(sample(10:100, num_rows, replace = TRUE)),
Gender = sample(c("male", "female"), num_rows, replace = TRUE),
sweating = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
pain.radiation = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
pleuritic = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
palpation = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
ecg.twi = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
second_hstni = as.numeric(sample(1:200, num_rows, replace = TRUE)),
killip.class = as.numeric(sample(1:4, num_rows, replace = TRUE)),
systolic.bp = as.numeric(sample(0:300, num_rows, replace = TRUE)),
heart.rate = as.numeric(sample(0:300, num_rows, replace = TRUE)),
creat = as.numeric(sample(0:4, num_rows, replace = TRUE)),
cardiac.arrest = as.numeric(sample(c(0, 1), num_rows, replace = TRUE))
)
# Call the function with the cohort_xx
result <- GRACE_scores(data = cohort_xx, classify = TRUE)
summary(result$GRACE_strat)
summary(result$GRACE_score)