EDACS {RiskScorescvd} | R Documentation |
Emergency Department Assessment of Chest Pain Score (EDACS) function
Description
This function implements the EDACS score calculation as a vector
Age -
18-45 = 2
46-50 = 4
51-55 = 6
56-60 = 8
61-65 = 10
66-70 = 12
71-75 = 14
76-80 = 16
81-85 = 18
>=86 = 20
Sex -
Female = 0
Male = 6
Known coronary artery disease or >=3 risk factors*
The risk factors only apply to patients 18-50-
no = 0
yes = 4
Symptoms and signs
Diaphoresis no = 0 yes = 3
Pain radiates to arm, shoulder, neck, or jaw no = 0 yes = 5
Pain occurred or worsened with inspiration no = 0 yes = -4
Pain is reproduced by palpation no = 0 yes = -6
Two possible outcomes
Low risk cohort:
EDACS <16 and
EKG shows no new ischemia and
0-hr and 2-hr troponin both negative.
Not low risk cohort:
EDACS >=16 or
EKG shows new ischemia or
0-hr or 2-hr troponin positive.
Usage
EDACS(
Age = Age,
Gender = Gender,
diabetes = diabetes,
smoker = smoker,
hypertension = hypertension,
hyperlipidaemia = hyperlipidaemia,
family.history = family.history,
sweating = sweating,
pain.radiation = pain.radiation,
pleuritic = pleuritic,
palpation = palpation,
ecg.st.depression = ecg.st.depression,
ecg.twi = ecg.twi,
presentation_hstni = presentation_hstni,
second_hstni = second_hstni,
classify = FALSE
)
Arguments
Age |
a numeric vector of age values, in years |
Gender |
a binary character vector of sex values. Categories should include only 'male' or 'female'. |
diabetes |
a binary numeric vector, 1 = yes and 0 = no |
smoker |
a binary numeric vector, 1 = yes and 0 = no |
hypertension |
a binary numeric vector, 1 = yes and 0 = no |
hyperlipidaemia |
a binary numeric vector, 1 = yes and 0 = no |
family.history |
a binary numeric vector, 1 = yes and 0 = no |
sweating |
a binary numeric vector, 1 = yes and 0 = no |
pain.radiation |
a binary numeric vector, 1 = yes and 0 = no |
pleuritic |
a binary numeric vector, 1 = yes and 0 = no |
palpation |
a binary numeric vector, 1 = yes and 0 = no |
ecg.st.depression |
a binary numeric vector, 1 = yes and 0 = no |
ecg.twi |
a binary numeric vector, 1 = yes and 0 = no |
presentation_hstni |
a continuous numeric vector of the troponin levels |
second_hstni |
a binary numeric vector, 1 = yes and 0 = no |
classify |
a logical parameter to indicate classification of scores "TRUE" or none "FALSE" |
Value
A vector with EDACS score calculations and/or a vector of their classifications if indicated
Examples
# Create a data frame or list with the necessary variables
# Set the number of rows
num_rows <- 100
# Create a larger dataset with 100 rows
cohort_xx <- data.frame(
typical_symptoms.num = as.numeric(sample(0:6, num_rows, replace = TRUE)),
ecg.normal = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
abn.repolarisation = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
ecg.st.depression = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
Age = as.numeric(sample(30:80, num_rows, replace = TRUE)),
diabetes = sample(c(1, 0), num_rows, replace = TRUE),
smoker = sample(c(1, 0), num_rows, replace = TRUE),
hypertension = sample(c(1, 0), num_rows, replace = TRUE),
hyperlipidaemia = sample(c(1, 0), num_rows, replace = TRUE),
family.history = sample(c(1, 0), num_rows, replace = TRUE),
atherosclerotic.disease = sample(c(1, 0), num_rows, replace = TRUE),
presentation_hstni = as.numeric(sample(10:100, num_rows, replace = TRUE)),
Gender = sample(c("male", "female"), num_rows, replace = TRUE),
sweating = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
pain.radiation = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
pleuritic = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
palpation = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
ecg.twi = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
second_hstni = as.numeric(sample(1:200, num_rows, replace = TRUE))
)
# Call the function with the cohort_xx
results <- cohort_xx %>% rowwise() %>% mutate(EDACS_score = EDACS(Age,
Gender, diabetes, smoker, hypertension, hyperlipidaemia, family.history,
sweating, pain.radiation, pleuritic, palpation, ecg.st.depression, ecg.twi,
presentation_hstni, second_hstni, classify = FALSE))