meanEstimation {RiskPortfolios} | R Documentation |
Estimation of mean returns
Description
Function which is used to compute the estimation of the mean returns.
Usage
meanEstimation(rets, control = list())
Arguments
rets |
a |
control |
control parameters (see *Details*). |
Details
The argument control
is a list that can supply any of the following
components:
-
type
method used to estimate the mean returns, among'naive'
,'ewma'
,'bs'
and'mart'
where:'naive'
is used to compute the arithmetic mean of the returns.'ewma'
is used to compute the exponential weighted moving average mean of the returns. The data must be sorted from the oldest to the latest. See RiskMetrics (1996).'bs'
is used to compute the Bayes-Stein estimation. See Jorion (1986).'mart'
is used to compute the Martinelli (2008) implied returns.Default:
type = 'naive'
. -
lambda
decay parameter. Default:lambda = 0.94
.
Value
A (N \times 1)
vector of expected returns.
Author(s)
David Ardia, Kris Boudt and Jean-Philippe Gagnon Fleury.
References
Jorion, P. (1986). Bayes-Stein estimation for portfolio analysis. Journal of Finance and Quantitative Analysis 21(3), pp.279-292.
Martellini, L. (2008). Towards the design of better equity benchmarks. Journal of Portfolio Management 34(4), Summer,pp.34-41.
RiskMetrics (1996) RiskMetrics Technical Document. J. P. Morgan/Reuters.
Examples
# Load returns of assets or portfolios
data("Industry_10")
rets = Industry_10
# Naive estimation of the mean
meanEstimation(rets)
# Naive estimation of the mean
meanEstimation(rets, control = list(type = 'naive'))
# Ewma estimation of the mean with default lambda = 0.94
meanEstimation(rets, control = list(type = 'ewma'))
# Ewma estimation of the mean with lambda = 0.9
meanEstimation(rets, control = list(type = 'ewma', lambda = 0.9))
# Martinelli's estimation of the mean
meanEstimation(rets, control = list(type = 'mart'))
# Bayes-Stein's estimation of the mean
meanEstimation(rets, control = list(type = 'bs'))