wrap.rotation {Riemann} | R Documentation |
Prepare Data on Rotation Group
Description
Rotation group, also known as special orthogonal group, is a Riemannian manifold
SO(p) = \lbrace Q \in \mathbf{R}^{p\times p}~\vert~ Q^\top Q = I, \textrm{det}(Q)=1 \rbrace
where the name originates from an observation that when p=2,3
these matrices are rotation of
shapes/configurations.
Usage
wrap.rotation(input)
Arguments
input |
data matrices to be wrapped as
|
Value
a named riemdata
S3 object containing
- data
a list of
(p\times p)
rotation matrices.- size
size of each rotation matrix.
- name
name of the manifold of interests, "rotation"
Examples
#-------------------------------------------------------------------
# Checker for Two Types of Inputs
#-------------------------------------------------------------------
## DATA GENERATION
d1 = array(0,c(3,3,5))
d2 = list()
for (i in 1:5){
single = qr.Q(qr(matrix(rnorm(9),nrow=3)))
d1[,,i] = single
d2[[i]] = single
}
## RUN
test1 = wrap.rotation(d1)
test2 = wrap.rotation(d2)
[Package Riemann version 0.1.4 Index]