riem.m2skreg {Riemann} | R Documentation |
Manifold-to-Scalar Kernel Regression
Description
Given N
observations X_1, X_2, \ldots, X_N \in \mathcal{M}
and
scalars y_1, y_2, \ldots, y_N \in \mathbf{R}
, perform the Nadaraya-Watson kernel
regression by
\hat{m}_h (X) = \frac{\sum_{i=1}^n K \left( \frac{d(X,X_i)}{h} \right) y_i}{\sum_{i=1}^n K \left( \frac{d(X,X_i)}{h} \right)}
where the Gaussian kernel is defined as
K(x) := \frac{1}{\sqrt{2\pi}} \exp \left( - \frac{x^2}{2}\right)
with the bandwidth parameter h > 0
that controls the degree of smoothness.
Usage
riem.m2skreg(
riemobj,
y,
bandwidth = 0.5,
geometry = c("intrinsic", "extrinsic")
)
Arguments
riemobj |
a S3 |
y |
a length- |
bandwidth |
a nonnegative number that controls smoothness. |
geometry |
(case-insensitive) name of geometry; either geodesic ( |
Value
a named list of S3 class m2skreg
containing
- ypred
a length-
N
vector of smoothed responses.- bandwidth
the bandwidth value that was originally provided, which is saved for future use.
- inputs
a list containing both
riemobj
andy
for future use.
Examples
#-------------------------------------------------------------------
# Example on Sphere S^2
#
# X : equi-spaced points from (0,0,1) to (0,1,0)
# y : sin(x) with perturbation
#-------------------------------------------------------------------
# GENERATE DATA
npts = 100
nlev = 0.25
thetas = seq(from=0, to=pi/2, length.out=npts)
Xstack = cbind(rep(0,npts), sin(thetas), cos(thetas))
Xriem = wrap.sphere(Xstack)
ytrue = sin(seq(from=0, to=2*pi, length.out=npts))
ynoise = ytrue + rnorm(npts, sd=nlev)
# FIT WITH DIFFERENT BANDWIDTHS
fit1 = riem.m2skreg(Xriem, ynoise, bandwidth=0.001)
fit2 = riem.m2skreg(Xriem, ynoise, bandwidth=0.01)
fit3 = riem.m2skreg(Xriem, ynoise, bandwidth=0.1)
# VISUALIZE
xgrd <- 1:npts
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(xgrd, fit1$ypred, pch=19, cex=0.5, "b", xlab="", ylim=c(-2,2), main="h=1e-3")
lines(xgrd, ytrue, col="red", lwd=1.5)
plot(xgrd, fit2$ypred, pch=19, cex=0.5, "b", xlab="", ylim=c(-2,2), main="h=1e-2")
lines(xgrd, ytrue, col="red", lwd=1.5)
plot(xgrd, fit3$ypred, pch=19, cex=0.5, "b", xlab="", ylim=c(-2,2), main="h=1e-1")
lines(xgrd, ytrue, col="red", lwd=1.5)
par(opar)