riem.hclust {Riemann} | R Documentation |
Hierarchical Agglomerative Clustering
Description
Given N
observations X_1, X_2, \ldots, X_M \in \mathcal{M}
,
perform hierarchical agglomerative clustering with
fastcluster package's implementation.
Usage
riem.hclust(
riemobj,
geometry = c("intrinsic", "extrinsic"),
method = c("single", "complete", "average", "mcquitty", "ward.D", "ward.D2",
"centroid", "median"),
members = NULL
)
Arguments
riemobj |
a S3 |
geometry |
(case-insensitive) name of geometry; either geodesic ( |
method |
agglomeration method to be used. This must be one of |
members |
|
Value
an object of class hclust
. See hclust
for details.
References
Müllner D (2013). “fastcluster : Fast Hierarchical, Agglomerative Clustering Routines for R and Python.” Journal of Statistical Software, 53(9). ISSN 1548-7660.
Examples
#-------------------------------------------------------------------
# Example on Sphere : a dataset with three types
#
# class 1 : 10 perturbed data points near (1,0,0) on S^2 in R^3
# class 2 : 10 perturbed data points near (0,1,0) on S^2 in R^3
# class 3 : 10 perturbed data points near (0,0,1) on S^2 in R^3
#-------------------------------------------------------------------
## GENERATE DATA
mydata = list()
for (i in 1:10){
tgt = c(1, stats::rnorm(2, sd=0.1))
mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 11:20){
tgt = c(rnorm(1,sd=0.1),1,rnorm(1,sd=0.1))
mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 21:30){
tgt = c(stats::rnorm(2, sd=0.1), 1)
mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
myriem = wrap.sphere(mydata)
## COMPUTE SINGLE AND COMPLETE LINKAGE
hc.sing <- riem.hclust(myriem, method="single")
hc.comp <- riem.hclust(myriem, method="complete")
## VISUALIZE
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2))
plot(hc.sing, main="single linkage")
plot(hc.comp, main="complete linkage")
par(opar)
[Package Riemann version 0.1.4 Index]