fssa {Rfssa} | R Documentation |
Functional Singular Spectrum Analysis (FSSA)
Description
This function performs the decomposition (embedding and functional SVD steps)
for univariate (ufssa) or multivariate (mfssa) functional singular spectrum
analysis based on the input data type. The input can be a univariate or
multivariate functional time series (funts
) object.
Usage
fssa(Y, L = Y$N/2, ntriples = 20, type = "ufssa")
Arguments
Y |
an object of class |
L |
a positive integer, the window length, the default is half of FTS length. |
ntriples |
a positive integer, the number of eigentriples for the decomposition. |
type |
a string indicating the type of FSSA: "ufssa" (default for univariate FTS) or "mfssa" (default for multivariate FTS). |
Value
An object of class fssa
, containing functional objects,
eigenvalues, window length, and original data.
Examples
data("Callcenter")
# FSSA Decomposition step:
L <- 28
U <- fssa(Callcenter, L)
plot(U, type = "values", d = 10)
plot(U, type = "vectors", d = 4)
plot(U, type = "paired", d = 6)
plot(U, type = "lcurves", d = 4, vars = 1)
plot(U, type = "lheats", d = 4)
plot(U, type = "wcor", d = 10)
plotly_funts(U$Lsingf[[1]])
plot(U$Lsingf[[2]])
## Not run:
#--------------- Multivariate FSSA Example on bivariate -----------------------------
## temperature curves and smoothed images of vegetation
data("Montana")
# MFSSA Decomposition step:
L <- 45
U <- fssa(Montana, L)
plot(U, type = "values", d = 10)
plot(U, type = "vectors", d = 4)
plot(U, type = "lheats", d = 4)
plot(U, type = "lcurves", d = 4, vars = 1)
plot(U, type = "paired", d = 6)
plot(U, type = "periodogram", d = 4)
plot(U, type = "wcor", d = 10)
plotly_funts(U$Lsingf[[1]])
plot(U$Lsingf[[2]])
## End(Not run)
[Package Rfssa version 3.1.0 Index]