fm.fittingWAM {Rfmtool} | R Documentation |
Additive Fuzzy Measure Fitting function
Description
Estimate values of an additive fuzzy measure from empirical data. In this case the Choquet integral is the weighted arithmetic mean WAM.
Usage
fm.fittingWAM(data, env=NULL)
Arguments
data |
Empirical data set in pairs (x_1,y_1),(x_2,y_2),...,(x_d,y_d) where x_i in [0,1]^n is a vector containing utility values of n input criteria x_i1,x_i2,...,x_in,y_i in [0,1] is a single aggregated value given by decision makers. The data is stored as a matrix of M by n+1 elements, where M is the number of data instances, and n is the number of input criteria, the column n + 1 stores the observed aggregated value y. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is an array of size n containing estimated weighting vector of WAM. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
d <- matrix( c( 0.00125122, 0.563568, 0.193298, 0.164338,
0.808716, 0.584991, 0.479858, 0.544309,
0.350281, 0.895935, 0.822815, 0.625868,
0.746582, 0.174103, 0.858917, 0.480347,
0.71048, 0.513519, 0.303986, 0.387631,
0.0149841, 0.0914001, 0.364441, 0.134229,
0.147308, 0.165894, 0.988495, 0.388044,
0.445679, 0.11908, 0.00466919, 0.0897714,
0.00891113, 0.377869, 0.531647, 0.258585,
0.571167, 0.601746, 0.607147, 0.589803,
0.166229, 0.663025, 0.450775, 0.357412,
0.352112, 0.0570374, 0.607666, 0.270228,
0.783295, 0.802582, 0.519867, 0.583348,
0.301941, 0.875946, 0.726654, 0.562174,
0.955872, 0.92569, 0.539337, 0.633631,
0.142334, 0.462067, 0.235321, 0.228419,
0.862213, 0.209595, 0.779633, 0.498077,
0.843628, 0.996765, 0.999664, 0.930197,
0.611481, 0.92426, 0.266205, 0.334666,
0.297272, 0.840118, 0.0237427, 0.168081),
nrow=20,
ncol=4,byrow=TRUE);
fm.fittingWAM(d,env)