fm.fittingKinteractiveMarginalMC {Rfmtool} | R Documentation |
Fuzzy Measure Fitting function of the k-interactive using marginal representation and maximal chains method
Description
Estimate values of the k-interacive fuzzy measures from empirical data using marginal representation and maximal chains method.
Usage
fm.fittingKinteractiveMarginalMC(data, env=NULL, kadd="NA", K="NA", submod ="NA")
Arguments
data |
Empirical data set in pairs (x_1,y_1),(x_2,y_2),...,(x_d,y_d) where x_i in [0,1]^n is a vector containing utility values of n input criteria x_i1,x_i2,...,x_in, y_i in [0,1] is a single aggregated value given by decision makers. The data is stored as a matrix of M by n+1 elements, where M is the number of data instances, and n is the number of input criteria, the column n + 1 stores the observed aggregated value y. |
env |
Environment variable obtained from fm.Init(n). |
kadd |
Value of k-interactivity, which is used for reducing the complexity of fuzzy measures. kadd is defined as an optional argument, its default value is kadd = 2. |
K |
The constant K the value of FM value for sets of cardinality kadd+1 is computed from data, default 0.5. |
submod |
-1 indicates supermodular FM is needed, +1 indicates submodular, 0 otherwise. Should be consistent with K and n, see manual |
Value
output |
The output is an array of size 2^n containing estimated standard fuzzy measure in binary ordering. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
d <- matrix( c( 0.00125122, 0.563568, 0.193298, 0.164338,
0.808716, 0.584991, 0.479858, 0.544309,
0.350281, 0.895935, 0.822815, 0.625868,
0.746582, 0.174103, 0.858917, 0.480347,
0.71048, 0.513519, 0.303986, 0.387631,
0.0149841, 0.0914001, 0.364441, 0.134229,
0.147308, 0.165894, 0.988495, 0.388044,
0.445679, 0.11908, 0.00466919, 0.0897714,
0.00891113, 0.377869, 0.531647, 0.258585,
0.571167, 0.601746, 0.607147, 0.589803,
0.166229, 0.663025, 0.450775, 0.357412,
0.352112, 0.0570374, 0.607666, 0.270228,
0.783295, 0.802582, 0.519867, 0.583348,
0.301941, 0.875946, 0.726654, 0.562174,
0.955872, 0.92569, 0.539337, 0.633631,
0.142334, 0.462067, 0.235321, 0.228419,
0.862213, 0.209595, 0.779633, 0.498077,
0.843628, 0.996765, 0.999664, 0.930197,
0.611481, 0.92426, 0.266205, 0.334666,
0.297272, 0.840118, 0.0237427, 0.168081),
nrow=20,
ncol=4,byrow=TRUE);
fm.fittingKinteractiveMarginalMC(d,env,2,0.6,0)