ReturnCurves-package {ReturnCurves} | R Documentation |
Estimation of Return Curves
Description
Implements the estimation of the \(p\)-probability return curve (Murphy-Barltrop et al. 2023), as well as a pointwise and smooth estimation of the angular dependence function (Wadsworth and Tawn 2013).
Available functions
adf_est
: Estimation of the Angular Dependence Function (ADF)
adf_gof
: Goodness of fit of the Angular Dependence Function estimates
airdata
: Air pollution data
marggpd
: Assessing the Marginal Tail Fits
margtransf
: Marginal Transformation
rc_est
: Return Curve estimation
rc_gof
: Goodness of fit of the Return Curve estimates
rc_unc
: Uncertainty of the Return Curve estimates
runShiny
: Complementary Shiny app for the ReturnCurves package
Author(s)
Maintainer: Lídia André l.andre@lancaster.ac.uk
Authors:
Callum Murphy-Barltrop callum.murphy-barltrop@tu-dresden.de
References
Murphy-Barltrop CJR, Wadsworth JL, Eastoe EF (2023).
“New estimation methods for extremal bivariate return curves.”
Environmetrics, 34(5).
ISSN 1099095X, doi: 10.1002/env.2797.
Wadsworth JL, Tawn JA (2013).
“A new representation for multivariate tail probabilities.”
Bernoulli, 19(5B), 2689-2714.
ISSN 13507265, doi: 10.3150/12-BEJ471.
Examples
library(ReturnCurves)
data(airdata)
n <- dim(airdata)[1]
# Marginal Transformation
margdata <- margtransf(airdata)
head(margdata@dataexp)
# Return Curves estimation
prob <- 1/n
retcurve <- rc_est(margdata = margdata, p = prob, method = "hill")
head(retcurve@rc)
# ADF estimation
lambda <- adf_est(margdata = margdata, method = "hill")
head(lambda@adf)