| eppls {Renvlp} | R Documentation |
Fit the Envelope-based Partial Partial Least Squares model
Description
Fit the Envelope-based Partial Partial Least Squares model for multivariate linear regression with dimension u.
Usage
eppls(X1, X2, Y, u, asy = TRUE, init = NULL)
Arguments
X1 |
An |
X2 |
An |
Y |
An |
u |
A given dimension of the Envelope-based Partial Partial Least Squares. It should be an interger between |
asy |
Flag for computing the asymptotic variance of the envelope estimator. The default is |
init |
The user-specified value of Gamma for the envelope subspace. An |
Details
This function the Envelope-based Partial Partial Least Squares model for multivariate linear regression with dimension u,
Y = \mu + \Gamma\eta X + \varepsilon, \Sigma=\Gamma\Omega\Gamma' + \Gamma_{0}\Omega_{0}\Gamma'_{0}
using the maximum likelihood estimation. When the dimension of the envelope is between 1 and p1-1, the starting value and blockwise coordinate descent algorithm in Cook et al. (2016) is implemented. When the dimension is p1, then the envelope model degenerates to the standard multivariate linear regression. When the dimension is 0, it means that X and Y are uncorrelated, and the fitting is different.
Value
The output is a list that contains the following components:
muY |
The estimator of mean of |
mu1 |
The estimator of mean of |
mu2 |
The estimator of mean of |
beta1 |
A |
beta2 |
A |
Gamma |
An |
Gamma0 |
An |
gamma |
A |
eta |
A |
Omega |
A |
Omega0 |
A |
SigmaX1 |
The estimator of error covariance matrix |
SigmaYcX |
The estimator of error covariance matrix |
loglik |
The maximized log likelihood function. |
n |
The number of observations in the data. |
covMatrix1 |
The asymptotic covariance of vec(beta1). The covariance matrix returned are asymptotic. For the actual standard errors, multiply by 1 / n. |
covMatrix2 |
The asymptotic covariance of vec(beta2). The covariance matrix returned are asymptotic. For the actual standard errors, multiply by 1 / n. |
asySE1 |
The asymptotic standard error matrix for elements in |
asySE2 |
The asymptotic standard error matrix for elements in |
References
Park, Y., Su, Z. and Chung, D. (2022+) Envelope-based Partial Partial Least Squares with Application to Cytokine-based Biomarker Analysis for COVID-19.
Examples
data(amitriptyline)
Y <- amitriptyline[ , 1:2]
X1 <- amitriptyline[ , 4:7]
X2 <- amitriptyline[ , 3]
u <- u.eppls(X1, X2, Y)
u
m <- eppls(X1, X2, Y, 2)
m