trQuantMLE {ReIns} | R Documentation |
Estimator of large quantiles using truncated MLE
Description
This function computes estimates of large quantiles Q(1-p)
of the truncated distribution using the ML estimates adapted for upper truncation. Moreover, estimates of large quantiles Q_Y(1-p)
of the original distribution Y
, which is unobserved, are also computed.
Usage
trQuantMLE(data, gamma, tau, DT, p, Y = FALSE, plot = FALSE, add = FALSE,
main = "Estimates of extreme quantile", ...)
Arguments
data |
Vector of |
gamma |
Vector of |
tau |
Vector of |
DT |
Vector of |
p |
The exceedance probability of the quantile (we estimate |
Y |
Logical indicating if quantiles from the truncated distribution ( |
plot |
Logical indicating if the estimates should be plotted as a function of |
add |
Logical indicating if the estimates should be added to an existing plot, default is |
main |
Title for the plot, default is |
... |
Additional arguments for the |
Details
We observe the truncated r.v. X=_d Y | Y<T
where T
is the truncation point and Y
the untruncated r.v.
Under rough truncation, the quantiles for X
are estimated using
\hat{Q}_{T,k}(1-p) = X_{n-k,n} +1/(\hat{\tau}_k)([(\hat{D}_{T,k} + (k+1)/(n+1))/(\hat{D}_{T,k}+p)]^{\hat{\xi}_k} -1),
with \hat{\gamma}_k
and \hat{\tau}_k
the ML estimates adapted for truncation and \hat{D}_T
the estimates for the truncation odds.
The quantiles for Y
are estimated using
\hat{Q}_{Y,k}(1-p)=X_{n-k,n} +1/(\hat{\tau}_k)([(\hat{D}_{T,k} + (k+1)/(n+1))/(p(\hat{D}_{T,k}+1))]^{\hat{\xi}_k} -1).
See Beirlant et al. (2017) for more details.
Value
A list with following components:
k |
Vector of the values of the tail parameter |
Q |
Vector of the corresponding quantile estimates. |
p |
The used exceedance probability. |
Author(s)
Tom Reynkens.
References
Beirlant, J., Fraga Alves, M. I. and Reynkens, T. (2017). "Fitting Tails Affected by Truncation". Electronic Journal of Statistics, 11(1), 2026–2065.
See Also
trMLE
, trDTMLE
, trProbMLE
, trEndpointMLE
, trTestMLE
, trQuant
, Quant
Examples
# Sample from GPD truncated at 99% quantile
gamma <- 0.5
sigma <- 1.5
X <- rtgpd(n=250, gamma=gamma, sigma=sigma, endpoint=qgpd(0.99, gamma=gamma, sigma=sigma))
# Truncated ML estimator
trmle <- trMLE(X, plot=TRUE, ylim=c(0,2))
# Truncation odds
dtmle <- trDTMLE(X, gamma=trmle$gamma, tau=trmle$tau, plot=FALSE)
# Large quantile of X
trQuantMLE(X, gamma=trmle$gamma, tau=trmle$tau, DT=dtmle$DT, plot=TRUE, p=0.005, ylim=c(15,30))
# Large quantile of Y
trQuantMLE(X, gamma=trmle$gamma, tau=trmle$tau, DT=dtmle$DT, plot=TRUE, p=0.005, ylim=c(0,300),
Y=TRUE)