trQuantMLE {ReIns} | R Documentation |
Estimator of large quantiles using truncated MLE
Description
This function computes estimates of large quantiles of the truncated distribution using the ML estimates adapted for upper truncation. Moreover, estimates of large quantiles
of the original distribution
, which is unobserved, are also computed.
Usage
trQuantMLE(data, gamma, tau, DT, p, Y = FALSE, plot = FALSE, add = FALSE,
main = "Estimates of extreme quantile", ...)
Arguments
data |
Vector of |
gamma |
Vector of |
tau |
Vector of |
DT |
Vector of |
p |
The exceedance probability of the quantile (we estimate |
Y |
Logical indicating if quantiles from the truncated distribution ( |
plot |
Logical indicating if the estimates should be plotted as a function of |
add |
Logical indicating if the estimates should be added to an existing plot, default is |
main |
Title for the plot, default is |
... |
Additional arguments for the |
Details
We observe the truncated r.v. where
is the truncation point and
the untruncated r.v.
Under rough truncation, the quantiles for are estimated using
with and
the ML estimates adapted for truncation and
the estimates for the truncation odds.
The quantiles for are estimated using
See Beirlant et al. (2017) for more details.
Value
A list with following components:
k |
Vector of the values of the tail parameter |
Q |
Vector of the corresponding quantile estimates. |
p |
The used exceedance probability. |
Author(s)
Tom Reynkens.
References
Beirlant, J., Fraga Alves, M. I. and Reynkens, T. (2017). "Fitting Tails Affected by Truncation". Electronic Journal of Statistics, 11(1), 2026–2065.
See Also
trMLE
, trDTMLE
, trProbMLE
, trEndpointMLE
, trTestMLE
, trQuant
, Quant
Examples
# Sample from GPD truncated at 99% quantile
gamma <- 0.5
sigma <- 1.5
X <- rtgpd(n=250, gamma=gamma, sigma=sigma, endpoint=qgpd(0.99, gamma=gamma, sigma=sigma))
# Truncated ML estimator
trmle <- trMLE(X, plot=TRUE, ylim=c(0,2))
# Truncation odds
dtmle <- trDTMLE(X, gamma=trmle$gamma, tau=trmle$tau, plot=FALSE)
# Large quantile of X
trQuantMLE(X, gamma=trmle$gamma, tau=trmle$tau, DT=dtmle$DT, plot=TRUE, p=0.005, ylim=c(15,30))
# Large quantile of Y
trQuantMLE(X, gamma=trmle$gamma, tau=trmle$tau, DT=dtmle$DT, plot=TRUE, p=0.005, ylim=c(0,300),
Y=TRUE)