| trMLE {ReIns} | R Documentation |
MLE estimator for upper truncated data
Description
Computes the ML estimator for the extreme value index, adapted for upper truncation, as a function of the tail parameter k (Beirlant et al., 2017). Optionally, these estimates are plotted as a function of k.
Usage
trMLE(data, start = c(1, 1), eps = 10^(-10),
plot = TRUE, add = FALSE, main = "Estimates for EVI", ...)
Arguments
data |
Vector of |
start |
Starting values for |
eps |
Numerical tolerance, see Details. By default it is equal to |
plot |
Logical indicating if the estimates of |
add |
Logical indicating if the estimates of |
main |
Title for the plot, default is |
... |
Additional arguments for the |
Details
We compute the MLE for the \gamma and \sigma parameters of the truncated GPD.
For numerical reasons, we compute the MLE for \tau=\gamma/\sigma and transform this estimate to \sigma.
The log-likelihood is given by
(k-1) \ln \tau - (k-1) \ln \xi- ( 1 + 1/\xi)\sum_{j=2}^k \ln (1+\tau E_{j,k}) -(k-1) \ln( 1- (1+ \tau E_{1,k})^{-1/\xi})
with E_{j,k} = X_{n-j+1,n}-X_{n-k,n}.
In order to meet the restrictions \sigma=\xi/\tau>0 and 1+\tau E_{j,k}>0 for j=1,\ldots,k, we require the estimates of these quantities to be larger than the numerical tolerance value eps.
See Beirlant et al. (2017) for more details.
Value
A list with following components:
k |
Vector of the values of the tail parameter |
gamma |
Vector of the corresponding estimates for |
tau |
Vector of the corresponding estimates for |
sigma |
Vector of the corresponding estimates for |
conv |
Convergence indicator of |
Author(s)
Tom Reynkens.
References
Beirlant, J., Fraga Alves, M. I. and Reynkens, T. (2017). "Fitting Tails Affected by Truncation". Electronic Journal of Statistics, 11(1), 2026–2065.
See Also
trDTMLE, trEndpointMLE, trProbMLE, trQuantMLE, trTestMLE, trHill, GPDmle
Examples
# Sample from GPD truncated at 99% quantile
gamma <- 0.5
sigma <- 1.5
X <- rtgpd(n=250, gamma=gamma, sigma=sigma, endpoint=qgpd(0.99, gamma=gamma, sigma=sigma))
# Truncated ML estimator
trmle <- trMLE(X, plot=TRUE, ylim=c(0,2))