trMLE {ReIns} | R Documentation |
MLE estimator for upper truncated data
Description
Computes the ML estimator for the extreme value index, adapted for upper truncation, as a function of the tail parameter k
(Beirlant et al., 2017). Optionally, these estimates are plotted as a function of k
.
Usage
trMLE(data, start = c(1, 1), eps = 10^(-10),
plot = TRUE, add = FALSE, main = "Estimates for EVI", ...)
Arguments
data |
Vector of |
start |
Starting values for |
eps |
Numerical tolerance, see Details. By default it is equal to |
plot |
Logical indicating if the estimates of |
add |
Logical indicating if the estimates of |
main |
Title for the plot, default is |
... |
Additional arguments for the |
Details
We compute the MLE for the \gamma
and \sigma
parameters of the truncated GPD.
For numerical reasons, we compute the MLE for \tau=\gamma/\sigma
and transform this estimate to \sigma
.
The log-likelihood is given by
(k-1) \ln \tau - (k-1) \ln \xi- ( 1 + 1/\xi)\sum_{j=2}^k \ln (1+\tau E_{j,k}) -(k-1) \ln( 1- (1+ \tau E_{1,k})^{-1/\xi})
with E_{j,k} = X_{n-j+1,n}-X_{n-k,n}
.
In order to meet the restrictions \sigma=\xi/\tau>0
and 1+\tau E_{j,k}>0
for j=1,\ldots,k
, we require the estimates of these quantities to be larger than the numerical tolerance value eps
.
See Beirlant et al. (2017) for more details.
Value
A list with following components:
k |
Vector of the values of the tail parameter |
gamma |
Vector of the corresponding estimates for |
tau |
Vector of the corresponding estimates for |
sigma |
Vector of the corresponding estimates for |
conv |
Convergence indicator of |
Author(s)
Tom Reynkens.
References
Beirlant, J., Fraga Alves, M. I. and Reynkens, T. (2017). "Fitting Tails Affected by Truncation". Electronic Journal of Statistics, 11(1), 2026–2065.
See Also
trDTMLE
, trEndpointMLE
, trProbMLE
, trQuantMLE
, trTestMLE
, trHill
, GPDmle
Examples
# Sample from GPD truncated at 99% quantile
gamma <- 0.5
sigma <- 1.5
X <- rtgpd(n=250, gamma=gamma, sigma=sigma, endpoint=qgpd(0.99, gamma=gamma, sigma=sigma))
# Truncated ML estimator
trmle <- trMLE(X, plot=TRUE, ylim=c(0,2))