| trEndpointMLE {ReIns} | R Documentation |
Estimator of endpoint
Description
Estimator of endpoint using truncated ML estimates.
Usage
trEndpointMLE(data, gamma, tau, plot = FALSE, add = FALSE,
main = "Estimates of endpoint", ...)
Arguments
data |
Vector of |
gamma |
Vector of |
tau |
Vector of |
plot |
Logical indicating if the estimates of |
add |
Logical indicating if the estimates of |
main |
Title for the plot, default is |
... |
Additional arguments for the |
Details
The endpoint is estimated as
\hat{T}_{k} = X_{n-k,n} + 1/\hat{\tau}_k[( (1-1/k)/((1+ \hat{\tau}_k (X_{n,n}-X_{n-k,n}))^{-1/\hat{\xi}_k}-1/k))^{\hat{\xi}_k} -1]
with \hat{\gamma}_k and \hat{\tau}_k the truncated ML estimates for \gamma and \tau.
See Beirlant et al. (2017) for more details.
Value
A list with following components:
k |
Vector of the values of the tail parameter |
Tk |
Vector of the corresponding estimates for the endpoint |
Author(s)
Tom Reynkens.
References
Beirlant, J., Fraga Alves, M. I. and Reynkens, T. (2017). "Fitting Tails Affected by Truncation". Electronic Journal of Statistics, 11(1), 2026–2065.
See Also
trMLE, trDTMLE, trProbMLE, trQuantMLE, trTestMLE, trEndpoint
Examples
# Sample from GPD truncated at 99% quantile
gamma <- 0.5
sigma <- 1.5
X <- rtgpd(n=250, gamma=gamma, sigma=sigma, endpoint=qgpd(0.99, gamma=gamma, sigma=sigma))
# Truncated ML estimator
trmle <- trMLE(X, plot=TRUE, ylim=c(0,2))
# Endpoint
trEndpointMLE(X, gamma=trmle$gamma, tau=trmle$tau, plot=TRUE, ylim=c(0,50))
abline(h=qgpd(0.99, gamma=gamma, sigma=sigma), lty=2)