trEndpoint {ReIns} | R Documentation |
Estimator of endpoint
Description
Estimator of endpoint using truncated Hill estimates.
Usage
trEndpoint(data, r = 1, gamma, plot = FALSE, add = FALSE,
main = "Estimates of endpoint", ...)
Arguments
data |
Vector of |
r |
Trimming parameter, default is |
gamma |
Vector of |
plot |
Logical indicating if the estimates of |
add |
Logical indicating if the estimates of |
main |
Title for the plot, default is |
... |
Additional arguments for the |
Details
The endpoint is estimated as
\hat{T}_{k,n} = \max\{X_{n-k,n} ( ((X_{n-k,n}/X_{n,n})^{1/\hat{\gamma}_k} - 1/(k+1)) / (1-1/(k+1)))^{-\hat{\gamma}_k}, X_{n,n}\}
with \hat{\gamma}_k
the Hill estimates adapted for truncation.
See Beirlant et al. (2016) or Section 4.2.3 of Albrecher et al. (2017) for more details.
Value
A list with following components:
k |
Vector of the values of the tail parameter |
Tk |
Vector of the corresponding estimates for the endpoint |
Author(s)
Tom Reynkens based on R
code of Dries Cornilly.
References
Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.
Beirlant, J., Fraga Alves, M.I. and Gomes, M.I. (2016). "Tail fitting for Truncated and Non-truncated Pareto-type Distributions." Extremes, 19, 429–462.
See Also
Examples
# Sample from truncated Pareto distribution.
# truncated at 99% quantile
shape <- 2
X <- rtpareto(n=1000, shape=shape, endpoint=qpareto(0.99, shape=shape))
# Truncated Hill estimator
trh <- trHill(X, plot=TRUE, ylim=c(0,2))
# Endpoint
trEndpoint(X, gamma=trh$gamma, plot=TRUE, ylim=c(8,12))
abline(h=qpareto(0.99, shape=shape), lty=2)