| trDTMLE {ReIns} | R Documentation |
Truncation odds
Description
Estimates of truncation odds of the truncated probability mass under the untruncated distribution using truncated MLE.
Usage
trDTMLE(data, gamma, tau, plot = FALSE, add = FALSE, main = "Estimates of DT", ...)
Arguments
data |
Vector of |
gamma |
Vector of |
tau |
Vector of |
plot |
Logical indicating if the estimates of |
add |
Logical indicating if the estimates of |
main |
Title for the plot, default is |
... |
Additional arguments for the |
Details
The truncation odds is defined as
D_T=(1-F(T))/F(T)
with T the upper truncation point and F the CDF of the untruncated distribution (e.g. GPD).
We estimate this truncation odds as
\hat{D}_T=\max\{ (k+1)/(n+1) ( (1+\hat{\tau}_k E_{1,k})^{-1/\hat{\xi}_k} - 1/(k+1) ) / (1-(1+\hat{\tau}_k E_{1,k})^{-1/\hat{\xi}_k}), 0\}
with E_{1,k} = X_{n,n}-X_{n-k,n}.
See Beirlant et al. (2017) for more details.
Value
A list with following components:
k |
Vector of the values of the tail parameter |
DT |
Vector of the corresponding estimates for the truncation odds |
Author(s)
Tom Reynkens.
References
Beirlant, J., Fraga Alves, M. I. and Reynkens, T. (2017). "Fitting Tails Affected by Truncation". Electronic Journal of Statistics, 11(1), 2026–2065.
See Also
trMLE, trEndpointMLE, trProbMLE, trQuantMLE, trTestMLE, trDT
Examples
# Sample from GPD truncated at 99% quantile
gamma <- 0.5
sigma <- 1.5
X <- rtgpd(n=250, gamma=gamma, sigma=sigma, endpoint=qgpd(0.99, gamma=gamma, sigma=sigma))
# Truncated ML estimator
trmle <- trMLE(X, plot=TRUE, ylim=c(0,2))
# Truncation odds
dtmle <- trDTMLE(X, gamma=trmle$gamma, tau=trmle$tau, plot=TRUE, ylim=c(0,0.05))