pEdge {ReIns}R Documentation

Edgeworth approximation

Description

Edgeworth approximation of the CDF using the first four moments.

Usage

pEdge(x, moments = c(0, 1, 0, 3), raw = TRUE, lower.tail = TRUE, log.p = FALSE)

Arguments

x

Vector of points to approximate the CDF in.

moments

The first four raw moments if raw=TRUE. By default the first four raw moments of the standard normal distribution are used. When raw=FALSE, the mean μ=E(X)\mu=E(X), variance σ2=E((Xμ)2)\sigma^2=E((X-\mu)^2), skewness (third standardised moment, ν=E((Xμ)3)/σ3\nu=E((X-\mu)^3)/\sigma^3) and kurtosis (fourth standardised moment, k=E((Xμ)4)/σ4k=E((X-\mu)^4)/\sigma^4).

raw

When TRUE (default), the first four raw moments are provided in moments. Otherwise, the mean, variance, skewness and kurtosis are provided in moments.

lower.tail

Logical indicating if the probabilities are of the form P(Xx)P(X\le x) (TRUE) or P(X>x)P(X>x) (FALSE). Default is TRUE.

log.p

Logical indicating if the probabilities are given as log(p)\log(p), default is FALSE.

Details

Denote the standard normal PDF and CDF respectively by ϕ\phi and Φ\Phi. Let μ\mu be the first moment, σ2=E((Xμ)2)\sigma^2=E((X-\mu)^2) the variance, μ3=E((Xμ)3)\mu_3=E((X-\mu)^3) the third central moment and μ4=E((Xμ)4)\mu_4=E((X-\mu)^4) the fourth central moment of the random variable XX. The corresponding cumulants are given by κ1=μ\kappa_1=\mu, κ2=σ2\kappa_2=\sigma^2, κ3=μ3\kappa_3=\mu_3 and κ4=μ43σ4\kappa_4=\mu_4-3\sigma^4.

Now consider the random variable Z=(Xμ)/σZ=(X-\mu)/\sigma, which has cumulants 0, 1, ν=κ3/σ3\nu=\kappa_3/\sigma^3 and k=κ4/σ4=μ4/σ43k=\kappa_4/\sigma^4=\mu_4/\sigma^4-3.

The Edgeworth approximation for the CDF of XX (F(x)F(x)) is given by

F^E(x)=Φ(z)+ϕ(z)(ν/6h2(z)(3k×h3(z)+γ32h5(z))/72)\hat{F}_{E}(x) = \Phi(z) + \phi(z) (-\nu/6 h_2(z)- (3k\times h_3(z)+\gamma_3^2h_5(z))/72)

with h2(z)=z21h_2(z)=z^2-1, h3(z)=z33zh_3(z)=z^3-3z, h5(z)=z510z3+15zh_5(z)=z^5-10z^3+15z and z=(xμ)/σz=(x-\mu)/\sigma.

See Section 6.2 of Albrecher et al. (2017) for more details.

Value

Vector of estimates for the probabilities F(x)=P(Xx)F(x)=P(X\le x).

Author(s)

Tom Reynkens

References

Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.

Cheah, P.K., Fraser, D.A.S. and Reid, N. (1993). "Some Alternatives to Edgeworth." The Canadian Journal of Statistics, 21(2), 131–138.

See Also

pGC, pEdge

Examples

# Chi-squared sample
X <- rchisq(1000, 2)


x <- seq(0, 10, 0.01)

# Empirical moments
moments = c(mean(X), mean(X^2), mean(X^3), mean(X^4))

# Gram-Charlier approximation
p1 <- pGC(x, moments)

# Edgeworth approximation
p2 <- pEdge(x, moments)

# Normal approximation
p3 <- pClas(x, mean(X), var(X))

# True probabilities
p <- pchisq(x, 2)


# Plot true and estimated probabilities
plot(x, p, type="l", ylab="F(x)", ylim=c(0,1), col="red")
lines(x, p1, lty=2)
lines(x, p2, lty=3)
lines(x, p3, lty=4, col="blue")

legend("bottomright", c("True CDF", "GC approximation", 
                        "Edgeworth approximation", "Normal approximation"), 
       col=c("red", "black", "black", "blue"), lty=1:4, lwd=2)

[Package ReIns version 1.0.14 Index]