genHill {ReIns} | R Documentation |
Generalised Hill estimator
Description
Computes the generalised Hill estimator for real extreme value indices as a function of the tail parameter .
Optionally, these estimates are plotted as a function of
.
Usage
genHill(data, gamma, logk = FALSE, plot = FALSE, add = FALSE,
main = "Generalised Hill estimates of the EVI", ...)
Arguments
data |
Vector of |
gamma |
Vector of |
logk |
Logical indicating if the estimates are plotted as a function of |
plot |
Logical indicating if the estimates should be plotted as a function of |
add |
Logical indicating if the estimates should be added to an existing plot, default is |
main |
Title for the plot, default is |
... |
Additional arguments for the |
Details
The generalised Hill estimator is an estimator for the slope of the last points of the generalised QQ-plot:
with the UH scores and
the Hill estimates.
This is analogous to the (ordinary) Hill estimator which is the estimator of the slope of the
last points of the Pareto QQ-plot when using constrained least squares.
See Section 4.2.2 of Albrecher et al. (2017) for more details.
Value
A list with following components:
k |
Vector of the values of the tail parameter |
gamma |
Vector of the corresponding generalised Hill estimates. |
Author(s)
Tom Reynkens based on S-Plus
code from Yuri Goegebeur.
References
Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.
Beirlant J., Goegebeur Y., Segers, J. and Teugels, J. (2004). Statistics of Extremes: Theory and Applications, Wiley Series in Probability, Wiley, Chichester.
Beirlant, J., Vynckier, P. and Teugels, J.L. (1996). "Excess Function and Estimation of the Extreme-value Index". Bernoulli, 2, 293–318.
See Also
Examples
data(soa)
# Hill estimator
H <- Hill(soa$size, plot=FALSE)
# Moment estimator
M <- Moment(soa$size)
# Generalised Hill estimator
gH <- genHill(soa$size, gamma=H$gamma)
# Plot estimates
plot(H$k[1:5000], M$gamma[1:5000], xlab="k", ylab=expression(gamma), type="l", ylim=c(0.2,0.5))
lines(H$k[1:5000], gH$gamma[1:5000], lty=2)
legend("topright", c("Moment", "Generalised Hill"), lty=1:2)