genHill {ReIns} | R Documentation |
Generalised Hill estimator
Description
Computes the generalised Hill estimator for real extreme value indices as a function of the tail parameter k
.
Optionally, these estimates are plotted as a function of k
.
Usage
genHill(data, gamma, logk = FALSE, plot = FALSE, add = FALSE,
main = "Generalised Hill estimates of the EVI", ...)
Arguments
data |
Vector of |
gamma |
Vector of |
logk |
Logical indicating if the estimates are plotted as a function of |
plot |
Logical indicating if the estimates should be plotted as a function of |
add |
Logical indicating if the estimates should be added to an existing plot, default is |
main |
Title for the plot, default is |
... |
Additional arguments for the |
Details
The generalised Hill estimator is an estimator for the slope of the k
last points of the generalised QQ-plot:
\hat{\gamma}^{GH}_{k,n}=1/k\sum_{j=1}^k \log UH_{j,n}- \log UH_{k+1,n}
with UH_{j,n}=X_{n-j,n}H_{j,n}
the UH scores and H_{j,n}
the Hill estimates.
This is analogous to the (ordinary) Hill estimator which is the estimator of the slope of the k
last points of the Pareto QQ-plot when using constrained least squares.
See Section 4.2.2 of Albrecher et al. (2017) for more details.
Value
A list with following components:
k |
Vector of the values of the tail parameter |
gamma |
Vector of the corresponding generalised Hill estimates. |
Author(s)
Tom Reynkens based on S-Plus
code from Yuri Goegebeur.
References
Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.
Beirlant J., Goegebeur Y., Segers, J. and Teugels, J. (2004). Statistics of Extremes: Theory and Applications, Wiley Series in Probability, Wiley, Chichester.
Beirlant, J., Vynckier, P. and Teugels, J.L. (1996). "Excess Function and Estimation of the Extreme-value Index". Bernoulli, 2, 293–318.
See Also
Examples
data(soa)
# Hill estimator
H <- Hill(soa$size, plot=FALSE)
# Moment estimator
M <- Moment(soa$size)
# Generalised Hill estimator
gH <- genHill(soa$size, gamma=H$gamma)
# Plot estimates
plot(H$k[1:5000], M$gamma[1:5000], xlab="k", ylab=expression(gamma), type="l", ylim=c(0.2,0.5))
lines(H$k[1:5000], gH$gamma[1:5000], lty=2)
legend("topright", c("Moment", "Generalised Hill"), lty=1:2)