crSurv {ReIns}R Documentation

Non-parametric estimator of conditional survival function

Description

Non-parametric estimator of the conditional survival function of YY given XX for censored data, see Akritas and Van Keilegom (2003).

Usage

crSurv(x, y, Xtilde, Ytilde, censored, h, 
       kernel = c("biweight", "normal", "uniform", "triangular", "epanechnikov"))

Arguments

x

The value of the conditioning variable XX to evaluate the survival function at. x needs to be a single number or a vector with the same length as y.

y

The value(s) of the variable YY to evaluate the survival function at.

Xtilde

Vector of length nn containing the censored sample of the conditioning variable XX.

Ytilde

Vector of length nn containing the censored sample of the variable YY.

censored

A logical vector of length nn indicating if an observation is censored.

h

Bandwidth of the non-parametric estimator.

kernel

Kernel of the non-parametric estimator. One of "biweight" (default), "normal", "uniform", "triangular" and "epanechnikov".

Details

We estimate the conditional survival function

1FYX(yx)1-F_{Y|X}(y|x)

using the censored sample (X~i,Y~i)(\tilde{X}_i, \tilde{Y}_i), for i=1,,ni=1,\ldots,n, where XX and YY are censored at the same time. We assume that YY and the censoring variable are conditionally independent given XX.

The estimator is given by

1F^YX(yx)=Y~iy(1Wn,i(x;hn)/(j=1nWn,j(x;hn)I{Y~jY~i}))Δi1-\hat{F}_{Y|X}(y|x) = \prod_{\tilde{Y}_i \le y} (1-W_{n,i}(x;h_n)/(\sum_{j=1}^nW_{n,j}(x;h_n) I\{\tilde{Y}_j \ge \tilde{Y}_i\}))^{\Delta_i}

where Δi=1\Delta_i=1 when (X~i,Y~i)(\tilde{X}_i, \tilde{Y}_i) is censored and 0 otherwise. The weights are given by

Wn,i(x;hn)=K((xX~i)/hn)/Δj=1K((xX~j)/hn)W_{n,i}(x;h_n) = K((x-\tilde{X}_i)/h_n)/\sum_{\Delta_j=1}K((x-\tilde{X}_j)/h_n)

when Δi=1\Delta_i=1 and 0 otherwise.

See Section 4.4.3 in Albrecher et al. (2017) for more details.

Value

Estimates for 1FYX(yx)1-F_{Y|X}(y|x) as described above.

Author(s)

Tom Reynkens

References

Akritas, M.G. and Van Keilegom, I. (2003). "Estimation of Bivariate and Marginal Distributions With Censored Data." Journal of the Royal Statistical Society: Series B, 65, 457–471.

Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.

See Also

crParetoQQ, crHill

Examples

# Set seed
set.seed(29072016)

# Pareto random sample
Y <- rpareto(200, shape=2)

# Censoring variable
C <- rpareto(200, shape=1)

# Observed (censored) sample of variable Y
Ytilde <- pmin(Y, C)

# Censoring indicator
censored <- (Y>C)

# Conditioning variable
X <- seq(1, 10, length.out=length(Y))

# Observed (censored) sample of conditioning variable
Xtilde <- X
Xtilde[censored] <- X[censored] - runif(sum(censored), 0, 1)

# Plot estimates of the conditional survival function
x <- 5
y <- seq(0, 5, 1/100)
plot(y, crSurv(x, y, Xtilde=Xtilde, Ytilde=Ytilde, censored=censored, h=5), type="l", 
     xlab="y", ylab="Conditional survival function")

[Package ReIns version 1.0.14 Index]