cQuantMOM {ReIns} | R Documentation |
Estimator of large quantiles using censored MOM
Description
Computes estimates of large quantiles using the estimates for the EVI obtained from the MOM estimator adapted for right censoring.
Usage
cQuantMOM(data, censored, gamma1, p, plot = FALSE, add = FALSE,
main = "Estimates of extreme quantile", ...)
Arguments
data |
Vector of |
censored |
A logical vector of length |
gamma1 |
Vector of |
p |
The exceedance probability of the quantile (we estimate |
plot |
Logical indicating if the estimates should be plotted as a function of |
add |
Logical indicating if the estimates should be added to an existing plot, default is |
main |
Title for the plot, default is |
... |
Additional arguments for the |
Details
The quantile is estimated as
ith the
-th order statistic of the data,
the MOM estimator adapted for right censoring and
the Kaplan-Meier estimator for the CDF evaluated in
. The value
is defined as
with the ordinary Hill estimator
and
the proportion of the
largest observations that is non-censored.
Value
A list with following components:
k |
Vector of the values of the tail parameter |
Q |
Vector of the corresponding quantile estimates. |
p |
The used exceedance probability. |
Author(s)
Tom Reynkens
References
Einmahl, J.H.J., Fils-Villetard, A. and Guillou, A. (2008). "Statistics of Extremes Under Random Censoring." Bernoulli, 14, 207–227.
See Also
cProbMOM
, cMoment
, QuantMOM
, Quant
, KaplanMeier
Examples
# Set seed
set.seed(29072016)
# Pareto random sample
X <- rpareto(500, shape=2)
# Censoring variable
Y <- rpareto(500, shape=1)
# Observed sample
Z <- pmin(X, Y)
# Censoring indicator
censored <- (X>Y)
# Moment estimator adapted for right censoring
cmom <- cMoment(Z, censored=censored, plot=TRUE)
# Large quantile
p <- 10^(-4)
cQuantMOM(Z, censored=censored, gamma1=cmom$gamma1, p=p, plot=TRUE)