cQuantGPD {ReIns} | R Documentation |
Estimator of large quantiles using censored GPD-MLE
Description
Computes estimates of large quantiles using the estimates for the EVI obtained from the GPD-ML estimator adapted for right censoring.
Usage
cQuantGPD(data, censored, gamma1, sigma1, p, plot = FALSE, add = FALSE,
main = "Estimates of extreme quantile", ...)
Arguments
data |
Vector of |
censored |
A logical vector of length |
gamma1 |
Vector of |
sigma1 |
Vector of |
p |
The exceedance probability of the quantile (we estimate |
plot |
Logical indicating if the estimates should be plotted as a function of |
add |
Logical indicating if the estimates should be added to an existing plot, default is |
main |
Title for the plot, default is |
... |
Additional arguments for the |
Details
The quantile is estimated as
ith the
-th order statistic of the data,
the generalised Hill estimator adapted for right censoring and
the Kaplan-Meier estimator for the CDF evaluated in
. The value
is defined as
with the ML estimate for
and
the proportion of the
largest observations that is non-censored.
Value
A list with following components:
k |
Vector of the values of the tail parameter |
Q |
Vector of the corresponding quantile estimates. |
p |
The used exceedance probability. |
Author(s)
Tom Reynkens
References
Einmahl, J.H.J., Fils-Villetard, A. and Guillou, A. (2008). "Statistics of Extremes Under Random Censoring." Bernoulli, 14, 207–227.
See Also
cProbGPD
, cGPDmle
, QuantGPD
, Quant
, KaplanMeier
Examples
# Set seed
set.seed(29072016)
# Pareto random sample
X <- rpareto(500, shape=2)
# Censoring variable
Y <- rpareto(500, shape=1)
# Observed sample
Z <- pmin(X, Y)
# Censoring indicator
censored <- (X>Y)
# GPD-MLE estimator adapted for right censoring
cpot <- cGPDmle(Z, censored=censored, plot=TRUE)
# Large quantile
p <- 10^(-4)
cQuantGPD(Z, gamma1=cpot$gamma1, sigma1=cpot$sigma1,
censored=censored, p=p, plot=TRUE)