cProbEPD {ReIns}R Documentation

Estimator of small exceedance probabilities and large return periods using censored EPD

Description

Computes estimates of a small exceedance probability P(X>q)P(X>q) or large return period 1/P(X>q)1/P(X>q) using the parameters from the EPD fit adapted for right censoring.

Usage

cProbEPD(data, censored, gamma1, kappa1, beta, q, plot = FALSE, add = FALSE,
         main = "Estimates of small exceedance probability", ...)

cReturnEPD(data, censored, gamma1, kappa1, beta, q, plot = FALSE, add = FALSE,
           main = "Estimates of large return period", ...)          

Arguments

data

Vector of nn observations.

censored

A logical vector of length nn indicating if an observation is censored.

gamma1

Vector of n1n-1 estimates for the EVI obtained from cEPD.

kappa1

Vector of n1n-1 estimates for κ1\kappa_1 obtained from cEPD.

beta

Vector of n1n-1 estimates for β\beta obtained from cEPD.

q

The used large quantile (we estimate P(X>q)P(X>q) or 1/P(X>q)1/P(X>q) for qq large).

plot

Logical indicating if the estimates should be plotted as a function of kk, default is FALSE.

add

Logical indicating if the estimates should be added to an existing plot, default is FALSE.

main

Title for the plot, default is "Estimates of small exceedance probability" for cProbEPD and "Estimates of large return period" for cReturnEPD.

...

Additional arguments for the plot function, see plot for more details.

Details

The probability is estimated as

P^(X>q)=(1km)×(1F(q))\hat{P}(X>q)= (1-km) \times (1-F(q))

with FF the CDF of the EPD with estimated parameters γ^1\hat{\gamma}_1, κ^1\hat{\kappa}_1 and τ^=β^\hat{\tau}=-\hat{\beta} and kmkm the Kaplan-Meier estimator for the CDF evaluated in Znk,nZ_{n-k,n} (the (k+1)(k+1)-th largest data point).

Value

A list with following components:

k

Vector of the values of the tail parameter kk.

P

Vector of the corresponding probability estimates, only returned for cProbEPD.

R

Vector of the corresponding estimates for the return period, only returned for cReturnEPD.

q

The used large quantile.

Author(s)

Tom Reynkens.

References

Beirlant, J., Bardoutsos, A., de Wet, T. and Gijbels, I. (2016). "Bias Reduced Tail Estimation for Censored Pareto Type Distributions." Statistics & Probability Letters, 109, 78–88.

See Also

cEPD, ProbEPD, Prob, KaplanMeier

Examples

# Set seed
set.seed(29072016)

# Pareto random sample
X <- rpareto(500, shape=2)

# Censoring variable
Y <- rpareto(500, shape=1)

# Observed sample
Z <- pmin(X, Y)

# Censoring indicator
censored <- (X>Y)

# EPD estimator adapted for right censoring
cepd <- cEPD(Z, censored=censored, plot=TRUE)

# Small exceedance probability
q <- 10
cProbEPD(Z, censored=censored, gamma1=cepd$gamma1,
        kappa1=cepd$kappa1, beta=cepd$beta, q=q, plot=TRUE)

# Return period
cReturnEPD(Z, censored=censored, gamma1=cepd$gamma1,
        kappa1=cepd$kappa1, beta=cepd$beta, q=q, plot=TRUE)        

[Package ReIns version 1.0.14 Index]