| cParetoQQ {ReIns} | R Documentation | 
Pareto quantile plot for right censored data
Description
Pareto QQ-plot adapted for right censored data.
Usage
cParetoQQ(data, censored, plot = TRUE, main = "Pareto QQ-plot", ...)
Arguments
| data | Vector of  | 
| censored | A logical vector of length  | 
| plot | Logical indicating if the quantiles should be plotted in a Pareto QQ-plot, default is  | 
| main | Title for the plot, default is  | 
| ... | Additional arguments for the  | 
Details
The Pareto QQ-plot adapted for right censoring is given by
( -\log(1-F_{km}(Z_{j,n})), \log Z_{j,n} )
for j=1,\ldots,n-1,
with Z_{i,n} the i-th order statistic of the data and F_{km} the Kaplan-Meier estimator for the CDF.
Hence, it has the same empirical quantiles as an ordinary Pareto QQ-plot but replaces the theoretical quantiles -\log(1-j/(n+1)) by -\log(1-F_{km}(Z_{j,n})).
This QQ-plot is only suitable for right censored data, use icParetoQQ for interval censored data.
Value
A list with following components:
| pqq.the | Vector of the theoretical quantiles, see Details. | 
| pqq.emp | Vector of the empirical quantiles from the log-transformed data. | 
Author(s)
Tom Reynkens
References
Beirlant, J., Guillou, A., Dierckx, G. and Fils-Villetard, A. (2007). "Estimation of the Extreme Value Index and Extreme Quantiles Under Random Censoring." Extremes, 10, 151–174.
See Also
ParetoQQ, icParetoQQ, cExpQQ, cLognormalQQ, cWeibullQQ, cHill, KaplanMeier
Examples
# Set seed
set.seed(29072016)
# Pareto random sample
X <- rpareto(500, shape=2)
# Censoring variable
Y <- rpareto(500, shape=1)
# Observed sample
Z <- pmin(X, Y)
# Censoring indicator
censored <- (X>Y)
# Pareto QQ-plot adapted for right censoring
cParetoQQ(Z, censored=censored)