cParetoQQ {ReIns} | R Documentation |
Pareto quantile plot for right censored data
Description
Pareto QQ-plot adapted for right censored data.
Usage
cParetoQQ(data, censored, plot = TRUE, main = "Pareto QQ-plot", ...)
Arguments
data |
Vector of |
censored |
A logical vector of length |
plot |
Logical indicating if the quantiles should be plotted in a Pareto QQ-plot, default is |
main |
Title for the plot, default is |
... |
Additional arguments for the |
Details
The Pareto QQ-plot adapted for right censoring is given by
( -\log(1-F_{km}(Z_{j,n})), \log Z_{j,n} )
for j=1,\ldots,n-1,
with Z_{i,n}
the i
-th order statistic of the data and F_{km}
the Kaplan-Meier estimator for the CDF.
Hence, it has the same empirical quantiles as an ordinary Pareto QQ-plot but replaces the theoretical quantiles -\log(1-j/(n+1))
by -\log(1-F_{km}(Z_{j,n}))
.
This QQ-plot is only suitable for right censored data, use icParetoQQ
for interval censored data.
Value
A list with following components:
pqq.the |
Vector of the theoretical quantiles, see Details. |
pqq.emp |
Vector of the empirical quantiles from the log-transformed data. |
Author(s)
Tom Reynkens
References
Beirlant, J., Guillou, A., Dierckx, G. and Fils-Villetard, A. (2007). "Estimation of the Extreme Value Index and Extreme Quantiles Under Random Censoring." Extremes, 10, 151–174.
See Also
ParetoQQ
, icParetoQQ
, cExpQQ
, cLognormalQQ
, cWeibullQQ
, cHill
, KaplanMeier
Examples
# Set seed
set.seed(29072016)
# Pareto random sample
X <- rpareto(500, shape=2)
# Censoring variable
Y <- rpareto(500, shape=1)
# Observed sample
Z <- pmin(X, Y)
# Censoring indicator
censored <- (X>Y)
# Pareto QQ-plot adapted for right censoring
cParetoQQ(Z, censored=censored)