VaR {ReIns} | R Documentation |
VaR of splicing fit
Description
Compute Value-at-Risk (VaR_{1-p}=Q(1-p)
) of the fitted spliced distribution.
Usage
VaR(p, splicefit)
Arguments
p |
The exceedance probability (we estimate |
splicefit |
A |
Details
See Reynkens et al. (2017) and Section 4.6 of Albrecher et al. (2017) for details.
Note that VaR(p, splicefit)
corresponds to qSplice(p, splicefit, lower.tail = FALSE)
.
Value
Vector of quantiles VaR_{1-p}=Q(1-p)
.
Author(s)
Tom Reynkens with R
code from Roel Verbelen for the mixed Erlang quantiles.
References
Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.
Reynkens, T., Verbelen, R., Beirlant, J. and Antonio, K. (2017). "Modelling Censored Losses Using Splicing: a Global Fit Strategy With Mixed Erlang and Extreme Value Distributions". Insurance: Mathematics and Economics, 77, 65–77.
Verbelen, R., Gong, L., Antonio, K., Badescu, A. and Lin, S. (2015). "Fitting Mixtures of Erlangs to Censored and Truncated Data Using the EM Algorithm." Astin Bulletin, 45, 729–758
See Also
qSplice
, CTE
, SpliceFit
, SpliceFitPareto
, SpliceFiticPareto
, SpliceFitGPD
Examples
## Not run:
# Pareto random sample
X <- rpareto(1000, shape = 2)
# Splice ME and Pareto
splicefit <- SpliceFitPareto(X, 0.6)
p <- seq(0,1,0.01)
# Plot of quantiles
plot(p, qSplice(p, splicefit), type="l", xlab="p", ylab="Q(p)")
# Plot of VaR
plot(p, VaR(p, splicefit), type="l", xlab="p", ylab=bquote(VaR[1-p]))
## End(Not run)